
www.manaraa.com

University of Louisville University of Louisville 

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository 

Electronic Theses and Dissertations 

1-2020 

Transient display of chimeric proteins on biological surfaces as Transient display of chimeric proteins on biological surfaces as 

an effective strategy for modulations of innate and adaptive an effective strategy for modulations of innate and adaptive 

immune responses. immune responses. 

Pradeep Shrestha 
University of Louisville 

Follow this and additional works at: https://ir.library.louisville.edu/etd 

 Part of the Medical Immunology Commons 

Recommended Citation Recommended Citation 
Shrestha, Pradeep, "Transient display of chimeric proteins on biological surfaces as an effective strategy 
for modulations of innate and adaptive immune responses." (2020). Electronic Theses and Dissertations. 
Paper 3413. 
https://doi.org/10.18297/etd/3413 

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's 
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized 
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of 
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu. 

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F3413&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/671?utm_source=ir.library.louisville.edu%2Fetd%2F3413&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/3413
mailto:thinkir@louisville.edu


www.manaraa.com

 

TRANSIENT DISPLAY OF CHIMERIC PROTEINS ON BIOLOGICAL SURFACES 

AS AN EFFECTIVE STRATEGY FOR MODULATION OF INNATE AND 

ADAPTIVE IMMUNE RESPONSES 

 

By 

Pradeep Shrestha 

B.Sc, Tribhuvan University 

M.Sc., Tribhuvan University 

M.S., University of Louisville 

 

 

A Dissertation Submitted to the Faculty of 

the School of Medicine at the University of Louisville 

in Partial Fulfillment of the Requirements 

for the Degree of  

 

Doctor of Philosophy in Microbiology and Immunology 

 

Department of Microbiology and Immunology 

University of Louisville 

Louisville, Kentucky 

 

May 2020 

 



www.manaraa.com

 

Copyright 2020 Pradeep Shrestha 

 

 

All rights reserved 

 

  



www.manaraa.com

 

 

 

 

 



www.manaraa.com

ii 
 

TRANSIENT DISPLAY OF CHIMERIC PROTEINS ON BIOLOGICAL SURFACES 

AS AN EFFECTIVE STRATEGY FOR MODULATION OF INNATE AND 

ADAPTIVE IMMUNE RESPONSES 

 

 

 

By 

Pradeep Shrestha 

B.Sc, Tribhuvan University 

M.Sc., Tribhuvan University 

M.S., University of Louisville 

 

April 8, 2020 

 

 

by the following Dissertation Committee: 

 

______________________________________ 

Dissertation Director: Haval Shirwan, Ph.D. 

 

______________________________________ 

Dissertation Co-Director: Esma Yolcu, Ph.D. 

 

______________________________________ 

Committee Member: Nejat K Egilmez, Ph.D. 

 

______________________________________ 

Committee Member: Mariusz Ratajczak, M.D., Ph.D., D.Sci 

 

______________________________________ 

Committee Member: Bing Li., Ph.D 



www.manaraa.com

iii 
 

 

 

 

DEDICATION 

 

To my parents who supported and inspired me to work hard to pursue my career 

To my brother who adores and tells me to have patience and hope 

To my dear wife who has been enduring me, caring for me and supporting me mentally, 

emotionally and physically and makes me a better person. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

iv 
 

ACKNOWLEDGEMENT 

 

Foremost, I would like to express my sincere gratitude to my mentor Dr. Haval Shirwan, 

for the opportunity and continuous support for my PhD research. His continuous 

motivation, guidance, enthusiasm and support made my research and dissertation possible. 

I am also truly grateful to my co-mentor Dr. Esma S. Yolcu for believing in me and 

providing the opportunity to work with her. Her guidance for quality research, motivation 

for hard work and exceptional support has definitely made this journey a success. I am very 

much thankful to my committee members Dr. Nejat K. Egilmez, Dr. Mariusz Ratajczak 

and Dr. Bing Li for their time, support and scientific insights that helped to progress this 

study. I am also truly grateful to all my past and present lab members Hong Zhao, Kyle 

Woodward, Hampartsoum Barsoumian, Helen Tan, Feng Zhang, Orlando Grimany, Ali 

Turan, Alper Togay, Christine Akimana, Lalit Batra, Tariq Malik, Lei Zhang and others 

for their help, trainings and friendship that made this journey pleasant and easy. I also 

would like to thank our collaborators: Dr. Andreas Garcia and Dr. Maria Coronel at 

Georgia Tech and Drs. Subha R. Das, Phil Campbell, Sai Yerneni and others at Carnegie 

Mellon University for the opportunity to work with these brilliant minds. I am also thankful 

to Melissa for helping me with blood withdraw. Special thanks to other helping hands, Dr. 

Rajdeep Bomjan and my parents, my brother and my dear wife for their continuous support 

and encouragement to pursue my goals and career aspiration. Finally, I would like to thank 

the department of Microbiology and Immunology, the Institute for Cellular therapeutics 

for providing great working environment.



www.manaraa.com

v 
 

ABSTRACT 

 

TRANSIENT DISPLAY OF CHIMERIC PROTEINS ON BIOLOGICAL SURFACES 

AS AN EFFECTIVE STRATEGY FOR MODULATION OF INNATE AND 

ADAPTIVE IMMUNE RESPONSES 

Pradeep Shrestha 

April 8, 2020

The major premise of this dissertation was to transiently display novel 

immunological ligands on biological membranes as a localized means of modulating innate 

and adaptive immune responses with applications to bone marrow and pancreatic islet 

transplantation.  In Chapter two, we engineered donor allogeneic bone marrow cells to 

transiently display a novel form of FasL, SA-FasL, to efficiently purge out alloreactive 

donor T cells to prevent acute GVHD.  In Chapter three, we engineered pancreatic islets 

with a novel form of CD47, SA-CD47, to modulate instant blood mediated inflammatory 

reaction (IBMIR) to prevent immediate islet graft loss following intraportal 

transplantation. 

GVHD is initiated and perpetuated by mature T cells in the bone marrow inoculum 

following transplantation into conditioned recipients.  Upon activation, T cells upregulate 

Fas receptor and become sensitive to FasL-mediated apoptosis.  Thus, we hypothesized 

that the display of SA-FasL on T cells in bone marrow will result in their apoptosis 

potentially in autocrine fashion following activation in response to recipient alloantigens 

and engagement of Fas with SA-FasL on the T cells, thereby resulting in the prevention of 
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acute GVHD.  We demonstrated that SA-FasL engineered T cells underwent apoptosis 

following response to alloantigens both in vitro and in vivo. Most importantly, in an 

haploidentical rodent setting where C57BL/6 bone marrow cells containing T cells 

transplanted into lethally irradiated F1 recipients, engineering cells with SA-FasL resulted 

in the prevention of lethal acute GVHD in 80% of recipients long term (>100 days). We 

extended this observation to xenogeneic acute GVHD setting, where mice receiving SA-

FasL-engineered human PBMCs were significantly protected. 

Significant islet mass loss following intraportal transplantation is a major barrier 

for clinical islet transplantation. IBMIR is initiated and perpetuated by innate immune cells. 

CD47-SIRPα axis known as innate immune checkpoint delivers “don’t eat me signal” to 

prevent phagocytosis and activation of myeloid cells. Thus, we hypothesized that 

engineering islets to transiently display SA-CD47 as an innate immune checkpoint will 

mitigate IBMIR and enhance engraftment following intraportal transplantation. In a 

syngeneic marginal mass model of intraportal transplantation, SA-CD47-islets showed 

better engraftment and function as compared with the control group (87.5 vs 14.3%). 

Engraftment was associated with low levels of intrahepatic inflammatory cells and 

mediators of islet destruction, including HMBG-1, tissue factor, and IL-1β. Overall, we 

show that transient display of immunological ligands on biological membranes is effective 

in modulating innate and adaptive immune responses with significant translational 

implication for multiple immune-based disorders.
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CHAPTER 1: INTRODUCTION 

 

Overview on hematopoietic stem cell transplantation (HSCT)  

 

Hematopoietic stem cells or bone marrow transplantation is a well-established 

treatment care for hematologic and non-hematologic malignancies that are not curable by 

conventional treatment procedures1,2. Over the last 50 years, HSCT procedure has evolved 

from a highly experimental technique to an effective cellular immunotherapeutic treatment 

against a number of malignancies, metabolic deficiencies, and autoimmune diseases3,4. 

With advances in patient-donor selection, reduced toxicity conditioning regimen, stem cell 

sources and supportive care, HSCT procedure has seen a significant progress. Annually an 

estimated 50,000 procedures are done worldwide and more than 1 million transplantations 

have been performed with 40% being allogeneic in nature2,5. 

The HSCT may be autologous or allogeneic in nature. Autologous transplantation 

procedure involves infusion of patient’s own stem cells. The procedure is mainly 

performed as a strategy to rescue from lethal chemotherapy against underlying malignancy. 

Allogeneic transplantation, where immunologically disparate hematopoietic stem cells and 

immunologic repertoire are infused into irradiation or chemotherapy conditioned patient to 

establish donor derived hematopoiesis and immunity6. Allogeneic transplant modality is 

currently extended to maintain mixed donor chimerism to establish solid organ graft 

tolerance7-9. Despite the advances, allogeneic HSCT is associated with a major life-
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threatening complication, graft-versus-host disease (GVHD),  thus limiting the use of this 

important procedure. GVHD occurs when the immunocompetent donor cells in the graft 

recognizes the recipient as foreign. The resulting immune response activates donor T cells 

to attack and eliminate recipient cells as foreign antigen bearing cells2.  

There are two main clinical presentation of GVHD: acute and chronic GVHD with 

different etiologies and pathophysiology. Acute GVHD was initially defined as a condition 

appearing within 100 days post transplantation whereas chronic GVHD being later1,10. 

However, this distinction is not tenable anymore as acute GVHD may present beyond 3 

months, whereas chronic GVHD may contract within 100 days post transplantation. The 

present diagnosis criteria involve the specificity of sign and symptoms, rather than the time 

of onset11,12. Acute GVHD manifests as infiltration of inflammatory T cells with target 

tissue destruction particularly skin, gastrointestinal tract, and liver. On the other hand, 

chronic GVHD involves the Th2 immune response, autoimmune disease characteristics 

including autoantibody formation in skin and mucosal surfaces. Acute GVHD is primarily 

driven by activated T cells and pro-inflammatory cytokines, whereas chronic GVHD is 

more complex and involving the interaction of innate immune cells with dysregulated B 

and T cells2,13.  

 

Immunobiology of acute graft-versus-host disease 

Acute GVHD is a severe inflammatory complication of allogeneic HSCT. Despite 

the advance in preventive and post-transplant strategies, acute GVHD is still considered a 

significant cause of morbidity and mortality in allogeneic HSCT recipients. Billingham 

proposed three distinct requirements for GVHD reaction: i) immune responsive donor cells 



www.manaraa.com

3 
 

in the graft; ii) Antigenic disparity between donor and recipient; iii) immune suppressed 

recipient system that cannot eliminate transplanted donor cells12,14. It is now well 

established that immune competent cells are donor T cells that primarily drive GVHD and 

can occur in different clinical settings when tissue (bone marrow, blood products or solid 

organ) containing T cells are transplanted to recipient that is unable to eliminate those 

cells2,12,15. 

Three-phase model of acute GVHD 

The progression of acute GVHD can be summarized in a three step process with an 

afferent and efferent phase. Phase 1 involves the effect of conditioning in which irradiation 

and chemotherapy as conditioning regimen induces injury to host epithelium and 

endothelium generating proinflammatory cytokines and recruits innate immune cells. 

Phase 2 involves the process of allorecognition, activation and proliferation of donor T 

cells in the inflammatory milieu induced in phase 1. These two phases make afferent phase 

of acute GVHD. Whereas in phase 3 as efferent phase the activated multiple effector cells, 

cytotoxic T cells (CTLs), natural killer (NK) cells and large granular lymphocytes cause 

significant damage and further injury in specific and non-specific ways12,16,17. The three-

phase model of acute GVHD is summarized in figure 1. 

Phase 1: Effects of conditioning 

HSCT recipient undergoes conditioning regimens before transfusion of donor 

grafts. The procedure involves irradiation and/or chemotherapy. The conditioning therapy 

is rather toxic to recipient tissues and induces tissue damage. Underlying disease and 

conditioning induce tissue injury and respond by releasing proinflammatory cytokines 

(TNF-α, IL-1 and IL6). 
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Figure 1: Pathophysiology of acute GVHD. The three phases of acute GVHD. 1. 

Activation of host APCs because of tissue damage due to conditioning regimen. 2. 

Activation, differentiation and proliferation of donor T cells by host APCs. 3. The effector 

phase where complex cascade of effector cells and inflammatory mediators in presence of 

chemokines and cytokines mediate host tissue damage. (Adapted from Ferrara et. al. 

Lancet 2009). 
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 The proinflammatory cytokines upregulates the expression of chemokines and other 

adhesion molecules, MHC antigens, costimulatory molecules in antigen presenting cells 

(APCs)2,12,18,19. In addition, gastrointestinal tract is particularly susceptible to injury during 

the conditioning process. This leads to systemic infusion of inflammatory stimuli such as 

lipopolysaccharide or other pathogen associated molecular patterns that stimulates gut 

associated lymphocytes and macrophages to produce TNF-α and IL-1. This directly 

contributes to “cytokine storm”2. Alongside, danger signals such as ATP, uric acid, high 

mobility group box-1, heparan sulfate released during tissue damage can activate 

inflammasomes2,20. This leads to cleavage of pro-IL-1β to its bioactive form IL-1β and thus 

enhancing GVHD. This surge of cytokines along with danger signals is important for 

initiation of primary and secondary immune response. Direct correlation between intensive 

conditioning regimen and acute GVHD severity is well established and clinical studies 

suggests that reduced intensity conditioning is associated with significantly reduced 

morbidity and less early acute GVHD17,21. 

Phase 2: Activation of donor T cells 

Interaction between donor T cells and recipient APCs play central role in acute 

GVHD. This interaction leads to their subsequent activation, proliferation and 

differentiation and is the second afferent stage in progression of acute GVHD. Donor T 

cells can be activated directly by host derived or indirectly by donor derived APCs. 

Presentation of alloantigens directly by host APCs appear to be critical in inducing acute 

GVHD although indirect presentation by recipient APCs also plays role in activation of 

donor T cells22,23. Dendritic cells (DCs) are the potent APCs during the process. 
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Inflammatory cytokines (TNF-α, IL-1), danger associated molecular patterns (DAMPs) 

and pathogen associated molecular pattern (PAMPs) produced during phase 1 

(conditioning effects) play important roles in maturation of DCs and induce activation of 

donor T cells whereas immature DCs induce T cell tolerance2,12,24.  

In addition to engagement of suitable TCR to alloantigen presenting MHC 

molecule, second costimulatory signal is required for full activation of T cells. 

Costimulatory signals lower the T cell activation threshold, inhibit apoptosis signaling, 

maintain cytokine production and support the metabolism of effector T cells. Multiple co-

stimulatory pathways including ICOS, CD28, OX40, and 41BB2,25,26 and negative 

regulatory pathway including CTLA-4, PD1-PDL1, have been shown to regulate 

progression of acute GVHD26,27.  

Finally, cytokines play important role in maintenance of T cell activation and 

survival that drives acute GVHD. Multiple cytokines including IL-1β and Th1 cell 

cytokines (IFN-γ, IL-2 and TNF-α) mediate T cells differentiation and GVHD 

pathogenesis12. For instance, IFN-γ plays a crucial role in pathophysiology of acute GVHD. 

T cells isolated in experimental and clinical acute GVHD produce large amounts of IFN-

γ28. IFN-γ upregulates chemokine expression, MHC molecule and adhesion molecules such 

that it facilitates antigen presentation and effector recruitment17. Also, IFN-γ plays 

important role in regulating apoptotic death of activated T cells by regulating Fas receptor, 

thus regulating GVHD29-31. In addition, IFN-γ exposure significantly reduces the threshold 

of LPS required to production of proinflammatory cytokines and Nitric oxide (NO) by 

macrophages17,32.  
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Phase 3: Cellular and Inflammatory effector phase 

Multiple cellular and inflammatory mediators mediate host tissue damage during 

the effector/efferent phase. It is a complex cascade where inflammatory agents (eg. NO. 

TNF-α, IL-1) and cellular mediators (eg. Cytotoxic T cells, NK cells) work in synergy to 

amplify host tissue damage thus promoting inflammation and target tissue injury. The 

primary cellular effectors are CTLs and NK cells that mediate direct tissue damage33. They 

can mediate cytotoxicity by two main pathways. Contact dependent ligation of Fas-FasL 

results in activation of death-inducing signaling complex (DISC). Activation of DISC 

results to activation of caspases ultimately leading to apoptotic cell death34-36. During 

GVHD, hepatocytes, epithelial cells on bile ducts upregulate expression of Fas receptor 

making them susceptible to FasL mediated cytotoxic effect. In contrast, gastrointestinal 

damage is preferentially mediated by perforin-granzyme-B cytotoxic pathway37,38.  

Activated mononuclear phagocytes are major source of inflammatory mediators 

including TNF-α, IL-1 that promote direct tissue damage in acute GVHD. TNF-α plays a 

central role in pathogenesis of acute GVHD. It plays role in activation of DCs and promotes 

antigen presentation. Also, regulates the recruitment of effector cells (neutrophils, 

monocytes, and effector T cells) to target organ by induction of inflammatory chemokines 

(CCL2-CCL5, CXCL2, CCL17)12,17. In addition, TNF-α can induce apoptosis and necrosis 

directly on tissues33,39. Nitric oxide (NO) is another inflammatory mediator in acute 

GVHD. NO promotes pathophysiology of acute GVHD by inducing immunosuppression 

an inhibiting repair mechanism of target tissue. This results in inhibition of proliferation of 

epithelial stem cells in gut and skin and induction of direct tissue damage32,40,41.  
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Thus, the complex synergistic interaction between cytotoxic effector cells and 

inflammatory mediators in presence of chemokines and cytokines results in amplification 

of local tissue injury thus further promoting inflammatory response that ultimately results 

in observed tissue destruction in the transplant recipient. 

 

Preventive and therapeutic strategies against acute GVHD 

Cyclosporine-A, a calcineurin inhibitor and a cytotoxic agent methotrexate (MTX) 

or mycophenylate mofetil (MTF) are commonly used as standard preventive 

pharmacologic agents against acute GVHD by multiple clinical centers. MTX/MTF and 

cyclosporine exert their antiproliferative effect on activated donor T cells by interfering 

with purine synthesis and calcium dependent TCR signaling respectively. With discovery 

of tacrolimus, another calcineurin inhibitor with similar mechanism to cyclosporine-A, that 

has similar or superior efficacy to cyclosporine is now widely used in clinical HSCT2,12,15. 

Tacrolimus/ cyclosporine exert their effect by inhibiting the calcineurin that is required for 

the activation of nuclear factor of activated T cell (NFAT) family transcription factor that 

is required for transcription of IL-2 and activation of T cells42. Sirolimus, an mTOR 

inhibitor, is more potent inhibitor of activation and proliferation of conventional T cells 

than regulatory T cells (Treg cells) owing to dependence of conventional T cells on mTOR-

kinase B. High dose of cyclophosphamide is currently used in haploidentical HSCT 

settings. Two doses of cyclophosphamide are infused immediately post transplantation to 

eliminate highly proliferating alloreactive T cells but concomitantly sparing of stem cells 

and Treg cells. Expression of high level of aldehyde dehydrogenase in Treg cells and stem 

cells is a major in vivo mechanism to cyclophosphamide resistance43.   
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Besides the use of pharmacologic agents, manipulation of donor T cells as a 

prophylactic strategy has been employed in multiple experimental and clinical HSCT 

settings. One such strategy employs T cell depleted bone marrow graft transplant followed 

by delayed donor lymphocyte T cell infusion44-46. Delayed T cell add back strategy 

circumvented acute GVHD and restored graft-versus-leukemia (GVL) effect; however, the 

antileukemic effect was not as efficient as T cell replete transplants44. Another strategy 

involves T cell depletion from the graft. These methods include ex vivo negative selection 

(e.g. monoclonal antibody, lectin agglutination), ex vivo positive selection of CD34+ cells, 

or in vivo depletion (anti T cell antibody preparation). However, these strategies 

substantially limited acute GVHD incidences but did not translate to improved overall 

survival because of graft failure, Epstein-Bar-Virus associated lymphoproliferative 

disorder, and disease relapse2,45,47. A more subtle strategy to define anti-host GVHD 

causing T cells and their depletion have been reported. This strategy targets activation 

induced antigens; whose expression is upregulated on alloreactive T cells upon stimulation 

in allogeneic mixed lymphocyte reaction culture. Selective depletion of activated cells 

based on activation markers (such as CD25, CD69, HLA-DR, CD134 and CD137) using 

fluorescence activated cell sorting (FACS) or CFSE dilution48 or CD25 conjugated 

immunotoxin49 have been reported to improve the outcome of HSCT47,48,50,51. These 

specific alloreactive T cell depletion approach significantly reduces GVHD without losing 

T cell associated graft-supporting properties and early immune reconstitution50,52. 

Multiple cellular therapy approaches have been tested. Adoptive transfer of ex vivo 

expanded Treg cells along with T cell replete graft was associated with significantly 

reduced incidence of acute GVHD with better survival53. In addition, adoptive transfer of 
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donor lymphocytes co-cultured with IL-10 treated host APCs in presence of TGF-β to 

enrich IL-10 producing type 1 regulatory T (Tr1) cells showed enhanced immune 

reconstitution with reduced acute GVHD2. 

Despite the prophylaxis, acute GVHD still evolves and the first line of therapy is 

systemic glucocorticoids like prednisone that have potent anti-lymphocyte and anti-

inflammatory activity. Patients refractory to steroid treatment have dismal long term 

prognosis with overall survival rate of only 5-30%2.  More importantly, acute GVHD 

restrict the HSCT to haploidentical population. Thus, there is an acute need for the 

development of less toxic and more efficacious approaches for bone marrow 

transplantation that goes beyond haploidentical.  

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

11 
 

Type 1 diabetes 

Diabetes mellitus is a chronic metabolic disorder characterized by persistently 

increased blood glucose level (BGL). The higher BGL in an individual being defined as 

fasting glucose level ≥ 125 mg/dl or random non-fasting glucose level  ≥ 200 mg/dl or 

hemoglobin A1c (HbA1c) ≥ 6.5%54,55. Persistent higher BGL can cause ketoacidosis, 

vascular injury, kidney failure, heart disease, stroke and blindness. The world prevalence 

of diabetes in adults was 6.4% in 2010 and expected to rise to 7.7% by 203055. Every year 

diabetes is associated with 200,000 deaths and costs $245 billion in US alone56.  

Type 1 diabetes (T1D) is a classical T cell mediated autoimmune disorder 

associated with loss of pancreatic β-cells. Significant loss of β-cells leads to insulin 

deficiency resulting in hyperglycemia and ketoacidosis54. Although it is termed as 

“juvenile diabetes” due to more frequent diagnosis in children, majority of patients with 

T1D are adults and represents 10-15% of total diabetes mellitus cases worldwide. 

Annually, in average 78,000 youths are diagnosed with T1D worldwide and in US alone > 

20 cases per 100,000 people and the incidence rate is expected to rise56-58.    

Etiology of T1D 

T1D is a polygenic heritable disease and at least 20 different chromosomal regions 

are associated to its susceptibility. For instance, identical twin concordance rate of T1D is 

30-70%, sibling risk of 3-7% and risk of 1-9% for children with parents who have T1D59,60. 

Multiple genetic factors contribute to both susceptibility as well as resistance to 

precipitation of T1D. One of the largest contributions comes from several genes located in 

MHC complex on chromosome 6p21 (i.e IDDM1 locus). Two HLA class II haplotypes 

HLA-DR3/4-DQ2/8, involved in antigen presentation, are associated with high risk or 
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disease heritability, whereas HLA-DR2-DQ6 allele is protective57,59-61. Genome-wide 

association studies have identified multiple non-HLA alleles, VNTR, PTPN22, CTLA4, 

IL2RA, associated with susceptibility to T1D. These genetic variants are involved in 

immune response that contributes to dysfunctional immune responsiveness, including 

development and maintenance of tolerance60. Despite the genetic factors, the concordance 

rate of T1D among monozygotic twins is only 50%, implicating the potential role of 

environmental factors in development and precipitation of T1D. One of the major 

candidates is viral infection. Extensive data suggests coxsackieviruses, an enterovirus 

infection precipitates T1D62. With evidence of enterovirus in pancreas of recent onset T1D 

patients and epidemiological studies suggesting significantly more enterovirus infection 

among diabetic patients than in controls supports the notion that viral infections are the 

environmental triggers. Many viruses can cause chronic or latent infection. Direct evidence 

comes from a study where coxsackievirus can infect β-cells and cause insulitis and diabetes 

in murine models63. With the landmark finding by Foulis et al.64 it is suggested that β-cell 

tropic viral infection upregulates HLA class I and IFN-α as “viral molecular signatures”. 

In addition, significant sequence similarity between coxsackievirus protein 2C and 

glutamic acid decarboxylase (GAD) protein, a major T1D autoantigen, postulates the viral 

mimicry as an etiology of T1D65. Coxsackievirus induced upregulation of CXCL10 

chemokine on pancreatic islets plays important role in recruitment of CXCR3 positive 

autoreactive T cells following viral infection66. Cumulatively, available data suggest the 

significant role of environmental triggers, viral infections, microbiome composition and 

metabolites, milk and wheat proteins, in unleashing autoimmunity, leading to destruction 

of beta cells that ultimately results in T1D. 
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Silent immune events targeting the destruction of pancreatic β-cells may take years 

before clinical symptoms of T1D becomes apparent. Autoantibodies and activated 

autoreactive T cells infiltrate the pancreas to destroy insulin producing β-cells. The 

persistent destruction of pancreatic β-cells is a slow process and may become undetectable 

until the majority (>80%) of pancreatic islets are destroyed or rendered dysfunctional, 

making an individual hyperglycemic and dependent on exogenous insulin54,62.  CD8+ T 

cells are the predominant population in the insulitis region, followed by macrophages, 

CD4+ T cells, and B cells.  

Van Belle TL et al.62 proposed that the disequilibrium between immune 

suppressive  mechanisms (Treg cells) and autoreactive T cells occur over time and shifts 

the balance to islet autoimmunity, leading to significant loss of islets mass and T1D 

(Figure 2). CD8+ T cells mediated killing of beta cells, by release of perforin and 

granzyme or Fas-FasL dependent interaction, is likely the central mechanism of beta cell 

destruction. CD4+ T cells likely contributes to activation of B cells and CD8+ T cells by 

secretion of cytokines (IL-21) or by positive feedback mechanism (CD40-CD40L)62,67. 
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Figure 2: Progression of type 1 diabetes. (Adapted from Van Belle TL et al. 2011.) 

  

Medical management of T1D 

Once T1D is diagnosed, the main objective is to maintain the BGL near normal 

level. Insulin remains the mainstay of the therapy although insulin analogs are available to 

manage BGL. Frequent glucose monitoring and multiple dose insulin regimen is required 

for optimal glycemic control. Multiple insulin injections or insulin pumps have their own 

complications and are limited to controlling medical complications, including hyper or 

hypoglycemia and vascular injury54. Hypoglycemia and ketoacidosis are potentially life-

threatening complications. Genetic predisposition with serological evidence for multiple 

autoantibodies is enough to predict the susceptibility of T1D. Multiple preventive strategies 
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that target autoimmune responses are being tested to prevent progression of T1D. Most 

strategies broadly implement immunomodulatory agents to maintain tolerance. 

Nevertheless, it is still at the primacy for prevention and reversal of T1D with no 

therapeutic agents being approved59,68,69. Following the breakthrough protocol for islet 

transplantation, the procedure has become standard of care treatment for individuals who 

have developed end-stage renal failure. Pancreatic islet transplantation involves infusion 

of donor islets into the liver via portal vein.  

Pancreatic islet transplantation 

Pancreatic islet transplantation (PITx) involves isolation of islets (containing β cells 

along with other endocrine and non-endocrine cells) and infusion into the liver of recipient 

via hepatic portal vein. Since the first islet transplantation was performed two decades ago, 

PITx is now considered safe and real therapeutic option for patients with chronic 

pancreatitis (autotransplantation) or in selected patients with affected by T1D 

(allotransplantation)70,71.   

Chronic pancreatitis is a syndrome with progressive inflammatory condition in 

pancreas leading to permanent damage leading to impaired endocrine and exocrine 

function72. This disease is the result of multiple environmental and genetic factors and 

involves replacement of pancreatic secretory parenchyma by fibrous tissue. Chronic 

pancreatitis is debilitating, painful, and eventually leads to diabetes. Total pancreatectomy 

followed by auto islet transplantation is performed to eliminate pain of pancreatitis and 

mitigate resultant pancreatogenic diabetes. So far more than 500 islet autotransplantation 

have been performed for cases of chronic pancreatitis. The procedure involves complete 

resection of pancreas followed by isolation of healthy islets from the diseased pancreas and 
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reinfusion of isolated islets to patient via hepatic portal vein for intrahepatic engraftment 

without use of immunosuppressive drugs72,73.  

In addition to patients with chronic pancreatitis, islet transplantation is also 

proposed for selected patients with other clinical indications: i) brittle T1D with unaware 

episodes of hyperglycemic and hypoglycemia; ii) combined organ transplantation (kidney) 

in T1D patients with kidney failure; iii) T1D patients under immunosuppressive therapy 

for other autoimmune diseases70. Pancreatic islet transplantation along with whole 

pancreas transplantation can restore normoglycemia as well as achieve exogenous insulin 

independence. However, whole pancreas transplantation is associated with significant 

morbidity and mortality at early transplant period. Instead pancreatic islet transplant is 

minimally invasive and is carried out by infusion of islets into the liver via portal vein74. 

With current advances, pancreatic islet transplantation is equally efficient to whole 

pancreas transplantation in normalizing BLG. The excellent therapeutic effect is the 

accurate blood glucose level responsive insulin secretion. The success of islet 

transplantation was realized after “Edmonton protocol” was established. The protocol uses 

glucocorticoid free immunosuppression and the long-term outcome results in 50-70% of 

patients achieve insulin independence at 5 years. More than 1500 procedures have been 

performed worldwide as of date. However, limited pancreas supply and use of chronic 

immunosuppression are the major contributing factors that restricts the applicability of this 

procedure75. 
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Figure 3: Pancreatic islet transplant procedure and factors contributing to loss of 

islets. (Adpated from Anazawa et al. 2019) 

Transplantation into the liver via portal vein is the only clinically approved site for 

islets. Despite the progress in islet isolation and transplantation procedure, intraportal islet 

transplantation suffers from significant loss (50-70%) of functional islet mass during the 

peritransplant period76,77, thus requiring islets from more than two donors to stabilize 

BGL78. Despite being transplanted from multiple donors, transplanted recipients have β-

cell function of only 20% of that in healthy individuals79. Multiple factors contribute to this 

that include localized hepatic ischemia/reperfusion, low oxygenation rate, endogenous 

liver immune response, and instant blood mediated inflammatory reaction (IBMIR).  
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Instant blood mediated inflammatory reaction (IBMIR) 

IBMIR is a complex non-specific innate immune response generated by contact of 

islets to blood when islets are infused to liver via hepatic portal vein. IBMIR is 

characterized by rapid activation of coagulation and complement system, rapid activation 

of platelets, neutrophils and binding. This generates islet-thrombus and intra-islet 

infiltration of dense lymphocyte and macrophage. This cascade of inflammatory reaction 

ultimately leads to disrupted islet integrity, morphology and loss of islet mass80,81.  

Activation of coagulation cascade and complement includes the initial steps in 

IBMIR. Islet isolation step involves treatment of whole pancreas with collagenase and 

isolation of “naked islets”. This process exposes molecules (collagen, laminin) that are 

thrombogenic in nature. In addition, isolated islets also lack membrane regulators (heparan 

sulfate)81,82. Cumulatively, the exposure of naked islets to blood facilitates activation of 

coagulation and complement. Further, stress during the procurement procedure, isolation 

and culture and brain death of donor induces pro-inflammatory signature with significant 

upregulation of tissue factor (TF), monocyte chemoattractant protein-1 (MCP-1), IL-1β 

and TNF-α. Strong coagulation cascade peaks as early as 6-12 hrs post transplantation and 

associated with upregulated levels of different pro-coagulating factors. Sequentially, 

IBMIR is also associated with activation of complement. Deposition of IgG, IgM along 

with C1q, C4, C3 and C9 result in formation of pro-inflammatory anaphylatoxins C3a and 

C5a80,81,83,84. Activated thrombin promotes the secretion of adhesion molecule (p-selectin), 

thus activating platelet aggregation. This results in generation of islet-thrombus. 

A panel of cytokines (IL-6, IL-8) recruit neutrophilic granulocytes and 

macrophages into the hepatic graft site. Under hypoxic condition, islets express pro-
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inflammatory and danger signals like high mobility group box-1 (HMGB-1), IFN-γ, IL-8, 

MCP-1. The intraislet macrophages, kuppfer cells, and neutrophils secret IL-1β that 

directly impairs insulin secretion and induce islet apoptosis85,86. Moberg et al.87 provides 

direct evidence of IBMIR mediated islet loss using in vitro loop assay. Accordingly, rapid 

platelets deposition occurs as early as 5 mins reaching maximum by 30 mins. Whereas 

CD11b+ neutrophilic granulocytes are predominant cell types infiltrating the islets. The 

cells occur as early as 15 mins and peaks by 2 hrs87. Activated neutrophilic granulocytes 

generate reactive oxygen derivatives. ROS along with proteases liberated from the granules 

of activated granulocytes implement direct damage to the islets84,87,88. In addition, they 

secrete MCP-1 to attract macrophages. Macrophages exert killing by phagocytosis, but 

simultaneously also act as APCs communicating with lymphocytes in the activation phase 

of specific allo-immune responses76. 

Strategies to prevent IBMIR 

Multiple approaches have been tested to abrogate IBMIR, however all strategies 

focus on the coagulation cascade to prevent generation of islet-thrombus. Clinically, 

heparin infusion is performed to prevent coagulation. Final islet product is infused in 

suspension of transplantation media containing heparin (70 units per Kg of recipient body 

weight). Systemic heparin infusion is performed for 48 hrs (3 U/Kg/hr) to prevent IBMIR75. 

However, Bennet et al.89 suggested, in ex vivo settings, that even using a high level of 

heparin (4 U/ml) was not enough to prevent extensive fibrin deposition and infiltration of 

CD11b+ cells. In addition to the risk of systemic bleeding, the relatively short half-life of 

systemic heparin impacts the therapeutic potential. Alternatively,  Cabric et al.90 used  

biotin/avidin strategy to display 40 U of heparin complexes per islet to mitigate IBMIR in 
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murine and porcine models. They reported prolonged syngeneic islet graft survival when 

300 islets were transplanted under the kidney capsule in a mouse model. However, under 

clinical settings islets are transplanted to a patient’s liver via hepatic portal vein. IBMIR is 

only observed in intraportal settings where islets come in direct contact with recipient’s 

blood circulation. Other anti-coagulation strategies involving low-molecular-weight 

dextran sulfate91 and the combination of Tirofiban and activated protein C (APC)92 have 

been reported to ameliorate IBMIR in ex vivo models. A study by Contreras et al.93 used a 

systemic bolus of recombinant APC to mitigate the early loss of islets. However, the use 

of anti-coagulating agents is always linked to high risk of bleeding and hepatic 

hematoma94,95. Strategies targeting anti-inflammatory88,96,97 and chemokine inhibitors98 

have also been reported to mitigate the effect of IBMIR.   

 

CD47-SIRPα, an innate immune checkpoint 

CD47, also known as integrin associated protein (IAP), was identified as missing 

protein in Rh-hull red blood cells. The same protein was also isolated with αvβ3 integrin 

in leukocytes and placenta99. CD47 is ubiquitously expressed by virtually all cells in the 

body. It interacts in cis with integrins, as well as acts as ligand for two members of signal 

regulatory protein (SIRP) receptor family100. CD47 is also a receptor for secreted protein 

thrombospondin-1 (TSP-1). CD47 is known to modulate immune responses in neutrophils, 

macrophages, dendritic cells and T cells101.  

CD47 is a member of immunoglobulin (Ig) superfamily with heavily glycosylated 

IgV-like extracellular domain at its N-terminus, highly hydrophobic five putative 

membrane spanning transmembrane domain, and alternatively spliced C-terminal 
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cytoplasmic domain. The extracellular domain is required for functional and physical 

interaction with integrins, TSP-1 and SIRP-α99,102. However, functional domain for 

enzymatic or protein interaction in the cytoplasmic tail is still at large. Signal regulatory 

protein (SIRP) belongs to Ig family of glycoproteins. SIRP family consists of an inhibitory 

receptor SIRPα (SHPS1), activating receptor SIRPβ1 and nonsignaling receptor 

SIRPγ100,103. SIRPα is widely expressed on myeloid cells, macrophages, dendritic cells and 

precursor including hematopoietic stem cells. SIRPα is an inhibitory receptor and interact 

with CD47 via three Ig-like extracellular domain. It contains tyrosine based 

immunoreceptor tyrosine based inhibitory motif (ITIM) domain in cytoplasmic tail. Upon 

ligand binding, the cytoplasmic domain gets phosphorylated and mediates recruitment and 

activation of Src-homology domain 2 containing phosphatase SHP-1 and SHP-2 and 

ultimately negatively regulates intracellular signaling100,103.  

CD47 modulates multiple cell activities including activation of neutrophils and 

platelets, transmigration of leukocytes, cell mobility and adhesion, and phagocytosis. The 

importance of CD47 in immunoregulation was revealed by the observation that pox virus 

upregulate homolog of CD47 as virulence factor to evade host immune responses104,105.  
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Figure 4: Multifactorial immunoregulatory role of CD47 (Wiersma, Valerie R., et al. 

Atlas of Genetics and Cytogenetics in Oncology and Haematology 2015.) 

CD47 delivers “don’t eat me” signal 

One of the well-studied aspect of CD47 is “marker of self” or “don’t eat me” signal 

delivered to macrophages and dendritic cells via SIRPα100,106-108. Macrophages and 

dendritic cells are important regulators of innate and adaptive immune system. They 

constantly screen for distinction between self and non-self, such that recognition of 

pathogens by pathogen associated molecular patterns (PAMPs) will trigger their activation, 

leading to initiation of innate immune response.  Interaction of CD47 as “marker of self” 

on healthy cells with SIRPα expressed on macrophages and dendritic cells results in 

inhibition of phagocytosis, hence coined as “don’t eat me signal”105,109. Evidence of this 

phenomenon came from observations that CD47-deficient red blood cells (RBCs) are 

efficiently cleared within hours by splenic macrophages, whereas healthy RBCs have long 

half-lives in circulation110,111. Also, CD47 is transiently upregulated by hematopoietic stem 
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cells upon mobilization or after strong inflammatory signal112. This transient upregulation 

is necessary for HSC to avoid being phagocytosed and cleared during their mobilization 

from bone marrow to blood. Studies also suggests that leukemic cells upregulate CD47 

expression as an effective evasion mechanism. Increased expression of CD47 was 

associated with worse overall survival prognosis in patients and contributes to progression 

and pathogenesis of the disease due to engagement with SIRPα to inhibit and evade 

phagocytosis113. 

Studies suggests expression of CD47 on DCs is important for homeostasis and 

migration across lymphatics and during inflammatory condition. CD47 is necessary for 

maturation of DCs and efficient T cells priming114. CD47-/- murine had selective reduction 

of marginal zone CD4+ DCs and blunted immune responses, suggesting the important role 

of CD47 in DC maturation and homeostasis. Furthermore, CD47 deficient DCs had 

impaired migration to draining lymph nodes, despite the normal expression level of 

chemokine receptor115. CD47 has been reported to play a role in activation and 

transmigration of neutrophils and platelets. Finley et al.116 showed that blood conduits 

modified with recombinant CD47 inhibited activation and adhesion of platelets and 

neutrophils. Similar studies suggested CD47-SIRPα signaling can inhibit activation and 

mobilization of neutrophils and macrophage in CD47 adhered surfaces117. In addition, the 

axis is also important for antibody dependent trogocytosis, a mechanic destruction of target 

cell plasma membrane, of cancer cells by neutrophils118. 

CD47-SIRPα interaction is highly species and strain specific100 and plays 

significant role in graft tolerance119,120. Xenografts activate recipient phagocytes due to the 

lack of interaction of donor CD47 with recipient SIRPα. However, xenografts displaying 
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recipient CD47 significantly diminishes phagocytic response with survival of grafts119,121. 

This is evidenced by significant human hematopoietic engraftment in non-obese diabetic 

(NOD)-severe combined immunodeficiency (SCID) mice because NOD-SIRPα shows 

enhanced binding to human CD47122.  

 

ProtExTM technology as a facile and effective platform for localized 

immunomodulation  

Immunomodulation by definition encompasses all therapeutic or preventive 

interventions intended to modulate immune responses123. Multiple modalities are 

employed to manage immune responses based on disease condition. For instance, 

augmentation of immune response is desirable to combat infection, to prevent infection in 

states of immune deficiency, as well as to fight cancer. In contrast, in settings of 

transplantation, allergy, or autoimmunity strategies to dampen the immune response are 

desirable123-125. Multiple drugs or therapeutic agents are often used as single agents or in 

combination to modulate the immune system.  These agents may interfere with immune 

responses at different levels, antigen presentation, T cell activation, proliferation of 

regulatory cells, or induction of apoptosis of selective cell types.  

In principle, the immunomodulatory biologics are used systemically, i.e., the 

infusion into the system by various routes of injection. This schema has significant 

drawback as systemically introduced biologics are rapidly cleared from the system. 

Alternatively, genes encoding these biologics can be introduce to target cell/tissue as an 

attractive platform for the treatment of various inherited and acquired immune disorders126. 

However, there are multiple challenges for clinical applicability of gene therapy, including 
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safety issues, inefficient delivery of gene of interest, and regulation of target gene 

expression126,127. As an alternative approach, our lab has pioneered the ProtExTM 

technology that provides a platform to generate functional immunological ligands chimeric 

with core streptavidin and their transient and rapid display on biotin-modified biological 

surfaces for localized immunomodulation. Another major advantage of the platform is the 

ability to simultaneously display multiple immunomodulatory proteins for improved 

efficacy.  

 

 

Figure 5: ProtExTM technology to display multiple immunomodulatory proteins on 

the biological or nonbiological surfaces. 
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Multiple functional immunomodulatory proteins, including SA-FasL, SA-PDL1, 

and SA-4-1BBL, have been generated using this platform and been used to induce localized 

tolerance to islet grafts128-130 and cardiac grafts131, efficient engraftment of stem cells132,133 

and development of cancer vaccines134,135. Here, in this set of study we extend our 

observation as efficient immunomodulatory approach in acute GVHD and IBMIR by 

targeting SA-FasL and SA-CD47, respectively. 
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CHAPTER 2 

TARGETING FAS-FASL PATHWAY FOR SELECTIVE ELIMINATION OF 

ALLOREACTIVE DONOR CELLS FOR PREVENTION OF ACUTE GRAFT 

VERSUS HOST DISEASE

 

Introduction 

Allogeneic hematopoietic stem cell transplantation (HSCT) is a well-established 

curative treatment modality for multiple high-risk hematologic malignancies as well as 

uncurable non-malignant hematological and genetic disorders2,4,51. However, the beneficial 

efficacy of this treatment is significantly limited by graft-versus-host disease (GVHD). 

GVHD represents a complex disease; while several factors contribute to its pathogenesis, 

the major mechanisms underlying the disease are well-elucidated. Interaction of T cell 

expressing suitable T cell receptor (TCR) with antigen presenting cells (APCs) that express 

recipient allogeneic MHC molecules is the driving force for the development of acute 

GVHD. T effector cells activated in response to recipient alloantigens expand and inflict 

damage to the recipient tissues. T cells are the main effectors of targeted tissue damage2. 

The GVHD causing alloreactive cells constitute a minor subset of total T lymphocytes48, 

which presents technical challenge for their complete elimination. Although, rigorous pan-

T cell depletion from the donor graft can significantly reduce the incidence and severity of 

acute GVHD, the procedure is associated with multiple complications including failure in 

graft engraftment, leukemia relapse, and delayed immune reconstitution47,48,51. Thus, the 

major challenge is to control donor immune reconstitution in the recipient post-
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transplantation, conserve beneficial donor T cell immune function against leukemia and 

infections and reduce the severity of acute GVHD. 

One of the distinctive features of the immune system is homeostatic control 

involves a phase of contraction after clonal expansion of antigen-activated lymphocytes to 

titrate the level back to the base line35,36,136,137. This is achieved by fine tuning between 

expansion and death triggered by apoptosis, activation induced cell death (AICD).  AICD 

is mediated by Fas/FasL (CD95/CD95L) pathway and is an important physiologic strategy 

to control the expansion of antigen-activated T cells. AICD requires repeated antigen-

specific TCR re-engagement in the presence of IL-2 and does not affect bystander T 

cells30,52,136,138. Resting T cells do not express Fas-receptor and express multiple apoptotic 

inhibitors (e.g. Flice like inhibitory protein, FLICE, or surviving), whereas activated 

antigen-specific T cells upregulate Fas receptor and significantly downregulate anti-

apoptotic molecules36,52,139. This marked difference makes alloreactive T cells prone to 

Fas/FasL mediated apoptosis, while endowing resistant to resting or bystander T cells. In 

addition, multiple studies suggest that HSCs133,140-143 and immunosuppressive regulatory T 

cells144 are highly resistant to FasL-mediated AICD. The differential response of activated, 

naïve, regulatory T cells, and HSC to Fas/FasL-mediated apoptosis provides an attractive 

approach to use FasL to selectively eliminate alloreactive T cells without a major negative 

impact on HSCs as well as resting T cells that aid in engraftment and T regulatory cells 

that modulate alloreactive immune responses. 

In our previous studies, we have reported a  novel form of FasL protein chimeric 

with streptavidin (SA)-FasL that exist as tetramers and oligomers with potent apoptotic 

activity on Fas-expressing cells130,145. The protein can be efficiently and rapidly displayed 
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on the surface of biotinylated cells and biologics128,130,133,143,145. Most importantly, SA-

FasL engineered cells or biologics could be employed to eliminate alloreactive T cells for 

systemic or localized immunomodulation128,130,131. Since upon activation alloreactive T 

cells upregulate Fas expression and become susceptible to FasL-mediated apoptosis, we 

hypothesized that the transient display of SA-FasL on donor cells will induce apoptosis in 

T cells following activation in response to the recipient alloantigens, thereby blocking acute 

GVHD. In line with our expectation, there was significant elimination of donor T cells 

upon allogenic stimulation in in vitro as well as in vivo settings. To test our strategy in 

mitigating lethal acute GVHD, we employed the haploidentical parent (C57BL/6) to F1 

(C57BL/6xBALB/c) setting. We report that recipients that received SA-FasL-engineered 

bone marrow cells containing mature T cells were protected from lethal acute GVHD and 

survived long term (>100 days), whereas all controls displayed clinical signs of acute 

GVHD and met end point by 40 days. The long-term recipients were immunocompetent as 

they rejected third party, but not donor, skin grafts.  Importantly, this concept also showed 

efficacy in a humanized mouse model for xenogeneic GVHD where human PBMC 

engineered with SA-FasL was used for transplantation.  Thus, this approach has significant 

translational potential for the prevention of acute GVHD as a single modality or in 

combination with other clinically used approaches. 
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Materials and methods 

Animals 

C57Bl/6 (H2b), BALB/c (H2d), C3H (H2k) and NOD-scid-IL2γRnull (NSG) mice were 

purchased from the Jackson Laboratory and breed in our specific pathogen free facility. 

C57BL/6.FoxP3hCD2 (hereafter referred as B6.hCD2)146 and B6.SJL-4C.TCR-tg (hereafter 

referred as 4C.SJL)147 animals were generously provided by Drs. H. Waldmann of Oxford 

University and TV Brennan of Duke University respectively. F1 (C57BL/6 x BALB/c, 

H2b/d) were breed in our facility. All animals were maintained in our specific pathogen free 

vivarium at the University of Louisville. All experiments were performed in accordance to 

approved protocols by Institutional Animal and Use Committee, University of Louisville. 

 

Modification of cell surface to engineer with SA-FasL protein 

Spleens from C57BL/6 or 4C.SJL were harvested and processed into single-cell suspension 

using frosted slides. Red blood cells were lysed using a home-made buffered ammonium 

chloride solution. SA-FasL engineering of spleen cells was done following previously 

reported protocols145.  In brief, cells were incubated in 5 µM EZ-LinkTM Sulfo-NHS-LC 

biotin (hereafter referred to as biotin) solution (ThermoFisher Scientific, Ref# 21335) in 

sterile PBS at room temperature for 30 min. After washing with PBS, cells were incubated 

in PBS containing indicated amount of SA- or SA-FasL protein for 30 min in a cold room 

by constant rocking. Cells were washed before further experimental use.  
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MLR cultures and proliferation assay 

Standard mixed lymphocyte culture assay was performed128,130 where spleen cells from 

4C.SJL was used as responders against 2000 cGy irradiated BALB/c spleen cells. Briefly, 

SA/SA-FasL engineered at indicated levels or unengineered 4C.SJL spleen cells were 

incubated at 37 °C for 45 mins to collect pan-T cells. Non-adherent pan-T cells were 

collected, washed and co-culture with irradiated BALB/c spleen cells (105 cells each/well) 

in 96 well U-bottom plate in complete MLR medium128. For [3H]thymidine incorporation 

assay, the cultures were pulsed with [3H]thymidine (1μCi/well) for last 16 hrs before 

harvest. Cultures were then harvested with Tomtec cell harvester and analyzed in a beta 

plate counter to assess DNA-associated radioactivity as measure of proliferation [counts 

per minute (cpm)]. For flowcytometric analysis, the cells were harvested, and surface 

stained as described below. 

For in vitro apoptosis assay, spleen cells from 4C.SJL mice were engineered with 

SA-FasL (100 ng). SA-FasL engineered or unmodified 4C.SJL spleen cells were 

fluorescently labelled with 2.5 μM carboxyfluorescein succinimidyl ester (CFSE; 

ThermoFisher Scientific Ref# C34554) or 2.5 μM Cell trace violet (CTV; ThermoFisher 

Scientific Ref# C34557), respectively, following manufacturer’s instruction. Fluorescently 

labelled 4C.SJL pan-T cells were mixed together in equal ratio to generate 4Cmix (1:1) 

cell suspension. Irradiated BALB/c spleen cells were cultured with 4Cmix cells at different 

indicated ratio in complete MLR medium. At indicated time points cells were harvested 

and analyzed for H2Kd- cells by flow cytometry. 
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In vivo monitoring of adoptively transferred cells 

Spleen cells from 4C.SJL or B6.hCD2 animals were harvested and engineered with SA-

FasL or SA (control) proteins at indicated levels. Engineered cells were fluorescently 

labelled with 2.5 μM cell trace violet (CTV). Each F1 recipient was intravenously injected 

with 5x106 CTV labelled SA- or SA-FasL-engineered 4C.SJL cells or 10x106 SA/SA-

FasL-engineered B6.hCD2 spleen cells. Animals that received 4C.SJL or B6.hCD2 spleen 

cells were euthanized 48 or 72 hrs post transplantation and spleen cells were analyzed by 

flow cytometry for donor cells.  

 

Collection of human PBMC 

Human Peripheral blood mono-nuclear cells (PBMCs) were isolated as reported before148 

from healthy donors under signed informed consent approved from Institutional review 

board of University of Louisville. Peripheral blood was collected in heparin containing 

vacutainer (BD Bioscience, Ref# 364606). PBMCs were purified and collected from buffy 

coats by Ficoll-paque (GE, Ref# 17-1440-03) density centrifugation and washed by sterile 

PBS before further use. Engineering of human PBMCs was done as described before145. 

 

Induction of acute GVHD in the parent-to-F1 setting 

A clinically relevant haploidentical setting was used to assess lethal acute GVHD as 

described before with some modifications39. Female or Male F1 (H2b/d) recipients, 10-12 

weeks old, were lethally irradiated with single dose of 1000 cGy (Gammacell 40 Exactor, 
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137Cs source) and 4 hrs later transplanted with 10x106 whole bone marrow cells and 20x106 

whole spleen cells from female or male C57BL/6 (H2b) mice. For engineering the graft 

inoculum, only whole spleen cells were engineered with SA-FasL as described above. 

Animals were followed twice a week for acute GVHD scoring, including five clinical 

parameters as explained before149,150. Each parameter received score of 0 (minimum) to 2 

(maximum). A clinical GVHD score index was generated by summation of the five criteria 

score (maximum value=10). Animals that reached total score of > 6 and lost body weight 

>25% was considered as at the end point. All animals were supported with soaked food 

throughout the study.  

 

Skin transplantation 

Skin grafts were procured from tail of euthanized BALB/c (H2Kd) donor or C3H (H2Kk) 

third party mice. Each section of tail skin graft from each donor was transplanted onto 

prepared skin bed site of an isoflurane anesthetized long term animal. The site was covered 

with an adhesive bandage, which was removed after 7 days. Animals were followed post 

transplantation and followed until complete loss of skin grafts151. 

 

Xenogeneic GVHD protocol 

Humanized xenogeneic GVHD was induced as described before148. Briefly, 8-10 weeks 

old NSG females received sublethal dose (200 cGy) of total body irradiation and injected 

4 hrs later with 10x106 engineered or unmodified human PBMCs via tail vein. Fresh human 

PBMCs were used in all experiments. Animals were followed for body weight twice a 
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week and the development of xenogeneic GVHD was assessed by five parameters: loss in 

body weight, posture, mobility, fur texture and skin texture152. Each parameter received a 

score of 0 (minimum) to 2 (maximum). Animals that reached significant body weight loss 

(> 25%) and total GVHD score > 6 were considered to reach end point and euthanized. 

 

Antibodies and Flow cytometry 

Fluorochrome conjugated monoclonal antibodies (Table 1 and 2) were titrated for optimal 

concentration before use. For cell surface staining, cells were incubated with the respective 

antibodies for 30 mins at 4 °C. For intracellular cytokine staining, cells were stimulated 

with PMA (50 ng/ml) and Ionomycin (1 μg/ml) for 6 hrs in presence of Golgi plug (BD 

Biosciences, Ref# 51-2301KZ) for last 4 hrs. After incubation, cells were surface stained 

followed by fixation (eBiosciences, Ref# 00-5123-43) and permeabilization (eBiosciences, 

Ref# 00-8333-56). For intracellular staining, cells were incubated with respective cytokine 

antibodies for 1 hr at room temperature. For intranuclear FoxP3 staining, Fix/Perm buffer 

(eBiosciences, Ref# 00-5523-00) was used per manufacturer’s instructions and staining 

with anti-FoxP3 antibody for 30 min at 4 °C. Flow cytometric analysis was done by using 

LSR II with FACS Diva software. Data analysis was done by using FlowJo software 

(Treestar). 
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Table1. Phenotypic analysis of mouse cells by flow cytometry 

 

 

 

 

 

 

Table 2. Phenotypic analysis of human cells by flow cytometry 

 

 

 

 

 

 

 

 

 

 

Marker Clone Vendor Cat# 

CD3 500A2 BD Biosciences 560771 

CD4 RM4-5 BD Biosciences 557956 

CD8 53-6.7 BD Biosciences 557654 

CD44 IM7 eBiosciences     48-0441-82 

CD62L MEL-14 BD Biosciences 563252 

PD1 RMP1-30 eBiosciences     48-9981-82 

CTLA4 UC10-44B9 eBiosciences 12-1522-83 

CD25 PC61.5 eBiosciences 25-0251-82 

FoxP3 FJK-16s eBiosciences 53-5773-82 

CD45 30-F11 eBiosciences 45-0451-80 

Fc block 93 Biolegend 101320 

 

Marker Clone Vendor Cat# 

CD45 HI30 BD Biosciences 564047 

CD3 UCHT1 BD Biosciences 563109 

CD4 L200 BD Biosciences 560836 

CD8 SK1 BD Biosciences 561423 

CD25 M-A251 BD Biosciences 557741 

CD45RO UCHL1 BD Biosciences 563749 

CD197 150503 BD Biosciences 562555 

CD95 DX2 BD Biosciences 556640 

CD127 HIL-7R-M21 BD Biosciences 558598 

CD20 2H7 BD Biosciences 560735 

CD4 SK3 BD Biosciences 566320 

CD20 2H7 BD Biosciences 563779 

CD16 3G8 BD Biosciences 562874 

CD3 UCHT1 BD Biosciences 560835 

CD8 RPA-T8 BD Biosciences 555369 

CD4 RPA-T4 BD Biosciences 555347 
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Cells isolation and CD25 depletion 

Single cells suspension from spleens were depleted of CD25+ cells using Miltenyi Biotec 

kit following manufacturer’s instructions.  Cells were sequentially stained with anti-CD25 

PE antibody (BD Biosciences, Ref#553866) and super-paramagnetic microbeads 

conjugated with monoclonal anti-PE antibodies (Miltenyi Biotec, Ref# 130-048-801). 

After staining, cells were passed through LS columns (Miltenyi Biotec, Ref# 130-042-401) 

and eluted cells were collected as CD25- cell fraction. CD25- cell fraction was then washed 

with PBS and followed for SA-FasL engineering as described above. 

RNA isolation and quantitative RT-PCR 

Total RNA was extracted from liver, colon and small intestine tissues using Trizol reagent 

(Life Technologies, Ref# 15596018) according to manufacturer’s instruction. Total RNA 

was quantified using NanoDrop ND-2000c spectrophotometer (ThermoFisher Scientific) 

and cDNA was reverse transcribed from 4 μg of the total RNA using SuperScriptTM IV 

VILOTM Master Mix (ThermoFisher Scientific, Ref# 11756050) following manufacturer’s 

instruction. Quantitative RT-PCR was performed for different genes (Table 3) using 

TaqMan probe assay on Quant Studio 3 RT-PCR system (Applied Biosystems). Each PCR 

reaction consisted of 5 μl of TaqMan Fast Advanced master mix, 1 μl of TaqMan primer 

and FAM/VIC labelled MGB probes, 1 μl of cDNA sample (from 1:10 dilution), and 3 μl 

of nuclease-free water in a final volume of 10 μl. The thermal cycling conditions were as 

follows: 1 cycle of 95 °C for 20s, followed by 40 cycles of 95 °C for 1s and 60 °C for 20s. 

Transcript expression was normalized to GAPDH housekeeping gene and represented as 

fold change (2-ΔΔCt, ΔΔCt = ΔCtexperimental - ΔCtcontrol). 
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Table 3. TaqMan assay for indicated gene expression in tissues 

 

 

 

 

 

 

 

 

Histopathology 

Tissues from animals on day 21 after HSCT were harvested, fixed in 10% neutral buffered 

formalin (Leica, Ref# 3800602) and embedded in paraffin. Sections (5 μm) were cut with 

microtome and subsequently stained with hematoxylin and eosin.  

Statistics 

Statistical analysis was performed using GraphPad prism software v.8 (Graphpad prism, 

CA). Comparison of the survival curves was done using log-rank (Mantel-Cox) test. Data 

are shown as individual data points or as mean ± SEM as depicted in the figure legends. 

Comparison of the means was performed using unpaired, two tailed test or Man-Whitney 

t-test as indicated. For multiple comparison, one-way ANOVA with tukey posttest was 

done. Statistical significance was defined as p < 0.05. 

Taqman Primer  
Assay ID 

(Thermofisher) 

CCl2/ MCP1                   Mm00441242_m1  

 IL-1β                         Mm00434228_m1  

 FoxP3                          Mm00475162_m1  

GATA3                     Mm00484683_m1  

TNF-α                            Mm99999068_m1  

IFN-γ                           Mm01168134_m1  

 IL-4                             Mm00445259_m1  

 IL-6                           Mm00446190_m1  

 IL-10                        Mm01288386_m1  

 Rorc/ ROR-γT             Mm01261022_m1  

TGF-β1                      Mm01178820_m1  

Tbx21/ T-Bet                Mm00450960_m1  

 GAPDH                     Mm99999915_g1 

 IL-12b/ IL-12 p40        Mm01288989_m1  

 IL-23α                       Mm00518984_m1  

 

https://www.thermofisher.com/taqman-gene-expression/product/Mm00441242_m1?CID=&ICID=&subtype=
https://www.thermofisher.com/taqman-gene-expression/product/Mm00434228_m1?CID=&ICID=&subtype=
https://www.thermofisher.com/taqman-gene-expression/product/Mm00475162_m1?CID=&ICID=&subtype=
https://www.thermofisher.com/taqman-gene-expression/product/Mm00484683_m1?CID=&ICID=&subtype=
https://www.thermofisher.com/taqman-gene-expression/product/Mm99999068_m1?CID=&ICID=&subtype=
https://www.thermofisher.com/taqman-gene-expression/product/Mm01168134_m1?CID=&ICID=&subtype=
https://www.thermofisher.com/taqman-gene-expression/product/Mm00445259_m1?CID=&ICID=&subtype=
https://www.thermofisher.com/taqman-gene-expression/product/Mm00446190_m1?CID=&ICID=&subtype=
https://www.thermofisher.com/taqman-gene-expression/product/Mm01288386_m1?CID=&ICID=&subtype=
https://www.thermofisher.com/taqman-gene-expression/product/Mm01261022_m1?CID=&ICID=&subtype=
https://www.thermofisher.com/taqman-gene-expression/product/Mm01178820_m1?CID=&ICID=&subtype=
https://www.thermofisher.com/taqman-gene-expression/product/Mm00450960_m1?CID=&ICID=&subtype=
https://www.thermofisher.com/taqman-gene-expression/product/Mm99999915_g1?CID=&ICID=&subtype=
https://www.thermofisher.com/taqman-gene-expression/product/Mm01288989_m1?CID=&ICID=&subtype=
https://www.thermofisher.com/taqman-gene-expression/product/Mm00518984_m1?CID=&ICID=&subtype=
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Results 

T effector cells engineered with SA-FasL are efficiently eliminated in response to 

alloantigens 

Alloreactive T cells upregulate Fas receptor as early as 1-2 days post allo-mixed 

lymphocyte reaction (MLR) assay rendering them sensitive to FasL by day 251. To test if 

SA-FasL engineered alloreactive cells will have reduced proliferation upon allogeneic 

stimulation, we performed [3H]thymidine incorporation assay. Spleen cells from 4C mice, 

TCR-transgenic on C56BL/6.SJL (CD45.1) background, were used as responders to 

irradiated BALB/c spleen cells. The T cells in 4C has selective reactivity against BALB/c 

H2-I-Ad alloantigen, which is widely expressed in mouse tissues147. Spleen cells from 4C 

were engineered with SA-FasL (SA-FasL-4C) at different levels or with control protein 

SA (SA-4C). SA-FasL-4C cells or SA-4C cells or unmodified (4C) cells were co-cultured 

with irradiated BALB/c cells. There was robust proliferation of 4C or SA-4C cells by 48 

and 72 hours post culture observed by significant incorporation of [3H]thymidine. In 

contrast, we observed significant inhibition of proliferation of SA-FasL-4C cells at all 

protein concentrations tested (Fig. 6A). This demonstrate that SA-FasL on the surface of 

alloreactive T cells is extremely effective, even at the lowest protein concentration tested, 

in blocking their proliferation in an in vitro allo-MLR setting. 

To provide evidence that SA-FasL targets both CD4+ and CD8+ T cells for 

inhibition, we assessed the frequency of these cells using Abs to CD4, CD8, and Vβ13 

TCR specific for the target alloantigen in flow cytometry. There was significant reduction 

in frequency of alloreactive CD4+ and CD8+ T cells expressing TCR Vβ13 in the SA-FasL 

engineered group as compared with controls (Fig. 6B). 
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SA-FasL on the surface can induce apoptosis in activated alloreactive T effector 

cells in three different ways; i) autocrine where SA-FasL engages Fas on the same T cell, 

ii) paracrine where SA-FasL on a T cell engages Fas on another T cell, or iii) combination 

of autocrine and paracrine.  To investigate the relative contribution of these death pathways 

we performed co-culture MLR studies. SA-FasL engineered 4C and unmanipulated 4C 

cells were labelled with CFSE and CTV, respectively. Fluorescence labelled 4C cells were 

then mixed at 1:1 ratio and used as responders at indicated ratios with a fixed number of 

irradiated BALB/c cells as stimulators. Unmanipulated 4C cells underwent robust 

proliferation by 72 hrs with distinct daughter cell generations. In marked contrast, there 

was minimal daughter cell generation in SA-FasL-4C cells at all cell ratios used (Fig. 6C), 

suggesting that SA-FasL-4C cells were primarily being eliminated by autocrine apoptosis.  
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Figure 6.  SA-FasL transiently displayed on the surface of T cells is effective in 

blocking their proliferation in response to alloantigens in vitro. (A) In vitro 

proliferation assay. SA-FasL-engineered or unmodified 4C T cells were stimulated with 

irradiated BALB/c splenocytes for 48 or 72 hrs. Cultures were pulsed with [3H]thymidine 

for the last 16 hrs of incubation and harvested using a beta plate counter. Cell associated 

radioactivity was measured using a scintillation counter. Data were pooled from two 

independent experiments. (B) Frequencies of live CD4, CD8, and Vβ13 T cell 

subpopulations in mixed lymphocyte cultures. Experimental conditions are the same as in 

(A), except instead of pulsing with [3H]thymidine, cultures were harvested at 72 hrs, 

stained with the Abs to indicated markers and analyzed using flow cytometry.   Data were 

pooled from two independent experiments. (C) SA-FasL induces autocrine death in 

alloreactive T cells. CTV labelled unmodified 4C cells were mixed one-to-one ratio with 

CFSE labelled SA-FasL-4C cells and used as responders at the indicated ratios against a 

fixed number of irradiated BALB/c cells as stimulators. Cells were harvested after 72 hrs 

of incubation and analyzed for live cells using flow cytometry. Representative flow dot 

plots of proliferating 4C cells. Date sets pooled from two independent experiments. One-

way ANOVA with Tukey multiple comparison was used in (A) and (B). Unpaired two 

tailed t-test was used in (C). Data are shown as mean ± SEM. cpm counts per minute. **p 

< 0.01, ***p < 0.001, ****p <0.0001 
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To recapitulate in vitro findings in an in vivo model, we used 4C.SJL (CD45.1) 

transfer to F1 transgenic recipients where 4C cells are expected to respond to the recipient 

H2-I-Ad antigen. 4C.SJL spleen cells were modified with biotin followed by engineering 

with SA-FasL (100 ng/106 cells) or SA (50 ng/106 cells) as the control protein.  Each F1 

animal was adoptively transferred with 5x106 CTV labelled SA-FasL-4C or SA-4C cells. 

After 48 hrs of transfer, spleen from F1 recipients were harvested and analyzed for CD45.1+ 

donor cells by flow cytometry. F1 recipients that were transferred with SA-FasL-4C cells 

had significantly less frequency and absolute numbers of live total donor cells (7AAD- 

CD45.1+) and CD45.1+CD4+ T cells (Fig. 7A and 8A). SA-FasL-4C recipients had 3.8-

fold reduction in live donor cells and 5.7-fold reduction in live CD4+ donor cells as 

compared with SA-4C recipients. In addition, substantially less proliferated donor cells 

(CTVlow CD45.1+) were observed in SA-FasL-4C as compared with SA-4C recipients (Fig. 

7A and 8A). This was evident by distinct daughter cell generations in SA-4C, but not in 

SA-FasL-4C, group (Fig. 8B). Annexin V staining revealed more apoptotic cells in SA-

FasL-4C as compared with SA-4C recipients (Fig. 7A), providing in vivo evidence for 

alloreactive T cells undergoing apoptosis.  

To further corroborate our in vivo observation, we performed this in vivo tracking 

study using a non-TCR transgenic model using spleen cells from C57B/6.hCD2 (H-2Kb) 

donors. These mice are transgenic for human CD2 expressed under the FoxP3 promotor of 

mice, providing a convenient means of tracking Treg cells using an Ab to human CD2146. 

Cells were engineered at indicated doses of SA-FasL or SA proteins,  labelled with CTV, 

and 10x106 cells were injected intravenously into F1 (H2Kb/d) recipients.  Animals were 

euthanized at 72 hrs and splenocytes were subjected to flow analysis. There was 
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significantly reduced frequency (Fig. 7B) as well as absolute number (Fig. 8C) of live 

donor total (H2Kd- CTV+) cells, CD4+ and CD8+ T cells as well as proliferating (H2Kd- 

CTVlow) donor T cells (Fig. 7B and 8C) at 72 hrs post transfer in F1 recipients of SA-FasL 

engineered cells as compared with those that received SA engineered cells. Interestingly, 

there was also a significant drop in the frequency and absolute numbers of T regulatory 

cells (hCD2+) in SA-FasL-spleen recipients (Fig. 7B and 8C). Importantly, these effects 

were observed for almost all SA-FasL protein doses tested, demonstrating the apoptotic 

efficacy of SA-FasL plausibly due to its autocrine mode of action.  

Taken together, these findings demonstrate that the transient display of SA-FasL 

protein on T cells is an efficient strategy of purging out pathogenic alloreactive cells  with 

great potential to mitigate acute GVHD.   
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Figure 7. Elimination of alloreactive cells by SA-FasL engineering in an allogeneic 

adoptive transfer model. (A) Tracking frequency, proliferation, and apoptosis of 4C cells 

in F1 recipients.  4C.SJL cells were labelled with CTV and engineered with SA or SA-

FasL proteins and adoptively transferred into F1 recipients (5x106 cells/mouse). After 48 

hrs post-transplant, spleen cells of recipients were analyzed for frequency of donor total 

live (7AAD- CD45.1+) cells, CD4+ T (CD45.1+CD4+) cells, proliferating (CTVlow) cells, 

and apoptotic (CD45.1+AnnexinV+) cells. Data pooled from two independent experiment, 

with n=3-4/group. (B) Tracking B6.hCD2 donor cells in F1 recipients. B6.hCD2 

splenocytes were labelled with CTV and engineered with SA (50 ng/106 cells) or the 

indicated amounts of SA-FasL protein.  Cells were adoptively transferred into F1 recipients 

(10x106 cells/mouse) that were euthanized 72 hrs later to harvest the spleen. Splenocytes 

were analyzed in flow cytometry by gating on donor cells (H-2Kd-) for the frequency of 
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total cells (CTV+H-2Kd-), CD4+ (CTV+H-2Kd-CD4+), CD8+(CTV+H-2Kd-CD8+) , and Treg 

(CTV+H-2Kd-CD4+hCD2+) cells as well as proliferating donor cells (CTVlowH-2Kd-). Data 

pooled from three independent experiments with n=3-4/group. For comparison of mean, 

Mann Whitney test was used in (A), One-way ANOVA with Tukey post test was used in 

(B). Data represented as mean ± SEM. *p <0.05**p < 0.01, ***p < 0.001, ****p <0.0001 
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Figure 8. SA-FasL engineered alloreactive cells are eliminated in in vivo model (A) 

Absolute number of 4C cells shown in Fig. 8A. Data pooled from two independent 

experiments. (B) Representative flow plot showing 4C cell proliferation, equal number of 

live events were acquired. (C) Absolute number of B6.hCD2 donor cells subpopulations 

shown in Fig. 8B. Data pooled from three independent experiments with n=3-4/group. For 

comparison of mean, Mann Whitney test was used in (A), One way ANOVA with Tukey 

post test was used in (C). Data represented as mean ± SEM. *p <0.05, **p < 0.01, ***p < 

0.001, ****p <0.0001 
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Transient display of SA-FasL on donor T cells Engineering of donor graft to display 

SA-FasL efficiently prevents lethal acute GVHD 

Selective depletion of alloreactive donor cells from graft is an efficient strategy for 

prevention of lethal acute GVHD2,153. Given the significant depletion of alloreactive T cells 

by engineering of cells to display SA-FasL on their surface, we assessed the efficacy of 

this strategy to prevent lethal acute GVHD. We used haploidentical parent (C57BL/6, 

H2Kb) to F1 (C57BL/6xBALB/c, H2Kb/d) model, simulating the broad use of 

haploidentical bone marrow cells in the clinic. Recipient F1 animals were lethally 

irradiated at 1000 cGy and 4 hrs later were infused with 20x106 SA-FasL engineered or 

unmodified spleen cells mixed with 10x106 unmodified whole bone marrow cells.  Controls 

that received only bone marrow cells survived long-term without any signs of GVHD as 

expected. However, recipients of a mixture of bone marrow cells and unmodified T cells 

developed acute GVHD symptoms, including bodyweight loss, hunching, and diarrhea, 

and expired with a median survival time of 26 days (Fig. 9A). The survival of recipients 

transplanted with SA-engineered donor spleen cells (SA group) and the severity of GVHD 

were not significantly different from the control group (MST =  25 days; Fig. 9A). The 

efficacy of SA-FasL was dose dependent as animals receiving T cells engineered with 25 

ng SA-FasL per 106 cells showed better survival at > 100 days than recipients transplanted 

with cells engineered with 10 or 5 ng protein (⁓73%,  ⁓63%, and 20%, respectively, Fig. 

9A). Clinical GVHD scores for these groups correlated with the survival rates.  Taken 

together, these results demonstrate the efficacy of this engineering platform with SA-FasL 

in preventing acute GVHD in a clinically relevant model. 
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We next analyzed long-term animals for immune composition. Long term animals 

(>100 days) that received SA-FasL engineered grafts had full donor chimerism (Fig. 10). 

Immune cells in spleen, peripheral blood and bone marrow were donor derived (H-2Kb+, 

Kd-), suggesting efficient engraftment of donor stem cells. Importantly, the frequency and 

absolute number of immune cells, including Treg cells (CD4+CD25+FoxP3+), T effector 

cells (CD4+CD44hiCD62L-), NK cells (NK1.1+CD3-) as well as ratios between Treg and 

Teff cells in the spleen of long term animals were comparable to the BM control group that 

did not receive splenocytes (Fig. 9B and 11A).  Similar observations were also made with 

peripheral blood lymphocytes (Fig. 11B).  These results demonstrate that long term animals 

have efficient overall lymphoid reconstitution.  
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Figure 9. Engineering donor graft with SA-FasL abrogates lethal acute GVHD and 

show efficient lymphoid reconstitution. (A) Survival of F1 recipients transplanted with 

a mixture of allogeneic bone marrow and splenocytes. Lethally irradiated F1 animals were 

transplanted with C57BL/6 bone marrow cells (20x106) co-mixed with syngeneic spleen 

cells (10x106) engineered with SA (12.5 ng/106 cells) or the indicated amount of SA-FasL. 

Animals transplanted with bone marrow only (BM) or a mixture of unmodified splenocytes 

and bone marrow cells (Spleen) served as controls. Animals were followed for body 

weight, clinical GVHD scores and survival. (B) Frequency of CD4+ Treg cells, Tem and 

NK cells in long term (>100 days) animals compared with bone marrow only recipients 

and unmanipulated naïve F1 animals. For comparison of survival curves log-rank (Mantel-
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cox) test was used in (A). For comparison of means in (B), one-way ANOVA with Tukey 

posttest was used. Data represented as mean ± SEM. *p <0.05**p < 0.01, ***p < 0.001, 

****p <0.0001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Long term SA-FasL-spleen recipients show full donor chimerism. Long 

term animals (>100 days) were analyzed for donor chimerism (H2Kb vs H2Kd) in bone 

marrow, peripheral blood and spleen. Frequency of H2Kd- (donor cells) in each cell 

compartment was analyzed by flow cytometry. Data shown as mean ± SEM. Mann 

Whitney test was used for mean comparison. *p <0.05, **p <0.01 
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Figure 11. Immunophenotyping analysis of long-term animals. Absolute number in 

spleen (A) and frequency in peripheral blood (B) of long-term recipients (>100 days) of 

SA-FasL-spleen cells compared with long-term recipients of bone marrow cells without 

GVHD causing spleen cells and naïve unmanipulated F1 animals. Data represented as 

mean ± SEM. One way ANOVA with Tukey posttest was used for statistical analysis.  
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Long term SA-FasL-engineered donor cell recipients are functionally immune 

competent. 

One of the important aspects in HSCT recipients is the immune competency. The 

recipients should be competent enough to initiate immune responses against third party 

antigens, to ward off infections, while maintaining tolerance to allo-antigens. To assess the 

functional immunity in long term SA-FasL-engineered grafts recipients (>90 days), we 

tested their ability to reject third party allografts. Two heterotopic skin grafts were applied 

to trunk of each mouse from TBI + BM group or SA-FasL-group (10 ng). One from 

BALB/c (H2Kd), which is targeting alloantigen in GVHD settings, and one from C3H/HeJ 

third party (H2KK) donors (Fig. 12). Interestingly, all long-term animals transplanted with 

BALB/c skin grafts accepted the graft, indicating the presence of systemic tolerance against 

recipient alloantigens (Fig. 12A and B). In marked contrast, all third party C3H/HeJ skin 

grafts were rejected in both groups (Fig. 12A) with median survival of 22 days. These 

results suggest that, at this time after transplantation, T cell immune reconstitution was 

competent to enable rejection response against third party skin grafts, while maintaining 

tolerance to recipient allogenic antigens.  
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Figure 12. Long term SA-FasL-spleen recipients are immune competent. Long term 

animals that received bone marrow cells only without GVHD causing spleen cells and 

bone marrow cells along with SA-FasL-spleen cells were challenged with simultaneous 

donor (BALB/c, H2b) and third party (C3H, H2k) skin grafts. Animals were followed for 

complete graft rejection and noted as day of graft survival. (A) Skin allograft survival. 

(B) Representative pictures of skin grafts on day 7 and 35 post-transplantation. For 

comparison of survival curve log-rank (Mantel-cox) test was used. ***p < 0.001, ****p 

<0.0001 
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SA-FasL recipients exhibit reduced activated alloreactive Th1 phenotype. 

Although our data provide direct evidence that physical elimination of alloreactive 

T cells is an important mechanism of the observed prevention of GVHD in our model, 

apoptosis initiate by SA-FasL may set in motion other immunoregulatory mechanisms that 

may accentuate the efficacy of SA-FasL in our model. Thus we analyzed liver, mesenteric 

lymph nodes (mLN) by flow cytometry and target organs (colon, ileum and liver) by qRT-

PCR during the efferent phase of acute GVHD, day 21, the time point when control group 

animals that received unmodified spleen cells had significant loss in body weight.  

Activated CD4+ T cells (CD4+FoxP3-CD44+CD62L-PD1+) and CD8+ T cells (CD8+CD25+ 

and CD8+CD44+CD62L-PD1+) were significantly higher in frequency in mLN and liver in 

the control group as compared with the SA-FasL group (Fig. 13A). Similar level of 

significance was also observed when analyzed as absolute numbers per gram in liver, but 

not in mLN (Fig. 14B). Interestingly, recipients of unmodified spleen cells had 

substantially higher frequency and absolute numbers of Treg cells (CD4+CD25+FoxP3+) 

than SA-FasL-spleen recipients in the liver and frequency, but not absolute cell numbers, 

in mLN (Fig. 13A and 14B).  However, the Treg (CD4+CD25+FoxP3+) and activated T 

effector (CD4+FoxP3-CD44+CD62L-PD1+ or CD8+CD44+CD62L-PD1+) cell ratio was not 

significant between the control and SA-FasL groups in the tissues analyzed (Fig. 13B). 

These observations suggest that the primary mechanism that SA-FasL prevents acute 

GVHD is physical elimination of alloreactive T effector cells, resulting in reduced 

frequency and absolute numbers in the target tissues. 

qRT-PCR analysis of GVHD target tissues (liver, colon and small intestine) from 

control group that received unmodified spleen cells had significantly higher expression 
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profile of inflammatory cytokines (IFN-γ, TNF-α, and IL-6), all are known mediators of 

acute GVHD154, as compared with SA-FasL-spleen recipients (Fig. 13C).  In addition, 

GVHD control group also had higher level of T-bet transcription factor, a master regulator 

of Th1 differentiation155, than SA-FasL-spleen recipients in all GVHD target organs (Fig. 

13C). Interestingly, upregulated Th1 response in GVHD control group was associated with 

augmented expression level of IL-4, mediator of Th2 differentiation, in liver (p = 0.0084) 

and colon (p = 0.0205) of SA-FasL-spleen recipients as compared with GVHD control 

group without an apparent difference in small intestine  (Fig. 13C). Similarly, the levels of 

GATA3, a master regulator of Th2 differentiation156,  transcript was significantly higher  

(p <0.0001) in large intestine, but not the liver or small intestine, of SA-FasL-spleen 

recipients than GVHD controls  (Fig. 15). GVHD control group also had higher level of 

other inflammatory mediators, including IL-1β (p = 0.0111), but the level of IL23p40 did 

not reach statistical significance (p=0.1006) in the liver (Fig. 15). We observed a similar 

pattern in the large intestine, but in the small intestine SA-FasL-spleen recipients had 

significantly higher expression level of IL23p40 (p = 0.0001; Fig. 15). SA-FasL-spleen 

recipients had significantly less transcripts of chemokine CCL2 in liver (p = 0.0099) and 

in small intestine (p = 0.0172; Fig. 13).  Interestingly, SA-FasL-spleen recipients had 

significantly higher expression level of RORγt in the liver (p= 0.0003) and small intestine 

(p= 0.0004), but significantly lower expression in large intestine (p <0.0001; Fig. 15). In 

marked contrast, when analyzed for FoxP3, transcription factor for Treg cells, GVHD 

control animals had higher level than SA-FasL-spleen recipients (Fig. 15).  

The qRT-PCR data was further corroborated by intracellular cytokine assay using 

spleen cells stimulated with phorbol myristate acetate (PMA) and ionomycin. SA-FasL-
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spleen cells recipient had significantly lower frequency, but not absolute numbers, of CD4+ 

cells secreting IFN-γ (p=0.0175) and TNF-α (p=0.0125) (Fig. 16). We did not observe any 

difference between the groups for IFN-γ or TNF-α or granzyme B producing CD8+ T cells 

(Fig. 16). Histologically, there was evidence of villous blunting (colon and ileum), 

intrahepatic infiltration and bile duct epithelial infiltration in the liver of GVHD control 

groups when compared with SA-FasL-spleen and BM recipients (Fig. 17). Taken together, 

these data suggest that SA-FasL-spleen recipients are protected from lethal acute GVHD 

by elimination of alloreactive T cells resulting in significantly reduced activated 

alloreactive T cells in the target organs by day 21. This was further supported by 

significantly higher transcripts of proinflammatory cytokines, Th1 skewed T cell 

phenotype, and other inflammatory mediators in GVHD control animals that received 

unmodified spleen cells but not SA-FasL-spleen recipients. 
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Figure 13. SA-FasL-spleen recipients have less activated cells and inflammatory 

mediators of acute GVHD at day 21 post transplantation. (A) Frequency of activated 

cells and regulatory T cells in mesenteric lymph nodes (mLN) and the liver. Intrahepatic 

immune cells and mesenteric lymph nodes were analyzed for activated CD4 (CD4+FoxP3-

CD44+CD62L-PD1+) and CD8+ T cells (CD8+CD25+; CD8+CD44+CD62L-PD1+) and Treg 

cells (CD4+CD25+FoxP3+). (B) Ratio of Treg cells to activated CD4+ and CD8+ T cells. 

(C) qRT-PCR analysis on target tissues [liver, large intestine (LI) and small intestine (SI)] 
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at day 21 post transplantation. Total RNA from liver, colon and ileum was isolated and 

subjected to TaqMan based qRT-PCR assay for indicated cytokines, transcription factors, 

and chemokines. Fold change expression (2-ΔΔCt) was calculated with respect to GAPDH 

as house-keeping gene and bone marrow only recipients. Data representative of two 

independent experiments and shown as mean ± SEM. For comparisons, One way ANOVA 

with Tukey posttest was used in (A), (B) and (C). *p <0.05**p < 0.01, ***p < 0.001, ****p 

<0.0001 
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Figure 14. Immunophenotyping of recipients at day 21 post transplantation. 

Mesenteric lymph nodes (mLN) and liver infiltrating cells were analyzed at day 21 post-

transplantation. (A) Frequency of CD4+ activated T cells (CD4+CD25+FoxP3-). (B) 

Absolute number of CD4+ and CD8+ activated T cells and Treg cells in mLN and liver. 

Data pooled from two independent experiments and shown as mean ± SEM. For 

comparison, One way ANOVA with Tukey posttest was used in (A) and (B). *p 

<0.05**p < 0.01, ***p < 0.001, ****p <0.0001 
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Figure 15. qRT-PCR analysis of GVHD target organs for immune markers. Total 

RNA from liver, colon, and ileum was isolated and subjected to TaqMan based qRT-PCR 

for the expression profile of multiple immune genes as indicated. Fold expression (2-ΔΔCt) 

was calculated with respect to GAPDH, as a house keeping gene, and bone marrow only 

recipients. Data represented as mean ± SEM. One way ANOVA with Tukey posttest was 

used for statistical comparison. *p <0.05**p < 0.01, ***p < 0.001, ****p <0.0001 
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Figure 16. Intracellular cytokine analysis on spleen cells. Frequency and absolute 

number of CD4+ and CD8+ T cells expressing IFN-γ, TNF-α, and granzyme B. After 21 

days post transplantation, spleen cells were harvested from the indicated groups, stimulated 

with PMA and ionomycin, and analyzed using flow cytometry. Data are from cells pooled 

from multiple animals and represent two independent experiments. Data are represented as 

mean ± SEM. One way ANOVA with Tukey posttest was used for statistical comparison. 

*p <0.05**p < 0.01, ***p < 0.001, ****p <0.0001 
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Figure 17. Representative H&E staining of GVHD target organs from each cohort. 

GVHD tissues were harvested at day 21 post transplantation, formalin fixed, and paraffin 

embedded. H&E staining was performed on tissue section for the indicated groups.  
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Donor CD25+  Treg cells are indispensable for the prevention of acute GVHD. 

CD4+ CD25+ regulatory T cells can suppress expansion of alloreactive T cells and 

inhibit lethal acute GVHD157,158. However, massive infusion of Treg cells at 1:1 ratio with 

T effector cells (CD25-) is required for protection53,158. To assess the contribution of Treg 

cells for the protection against acute GVHD in our model, we depleted CD25+ T regulatory 

cell population from donor cell inoculum (Fig. 18) and then used the Treg-deplete 

splenocytes for adoptive transfer into lethally irradiated F1 recipients. Recipients 

transplanted with whole unmodified splenocytes developed fatal signs of acute GVHD with 

median survival time of 34 days. Whereas, animals receiving whole SA-FasL engineered 

splenocytes were protected from lethal GVHD with 80% of animals survived long term (> 

60 days). Surprisingly, all F1 recipients of Treg-deplete splenocytes engineered with SA-

FasL developed signs of acute GVHD with severe diarrhea, hunched posture and decreased 

motion, and expired with a  median survival time of 28 days as compared with 34 days for 

GVHD controls (Fig. 19; p=0.043). Taken together, these results demonstrate the critical 

role of donor Treg cells in the prevention of acute GVHD in our model. 
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Figure 18. Depletion of CD25+ cells from donor inoculum. (A) Representative flow 

dot plot for CD25+ and FoxP3+ CD25+ cells in SA-FasL-spleen and CD25 depleted SA-

FasL-spleen inoculum, indicating significant depletion of CD25+ cells. (B) SA-FasL 

engineering level on CD25+ cells depleted inoculum. Histogram plot suggesting similar 

level of SA-FasL engineering on CD25+ replete inoculum and CD25+ deplete inoculum. 
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Figure 19. CD25+ cells are indispensable for observed protective effect of SA-FasL 

for acute GVHD. Lethally irradiated F1 mice received bone marrow cells admixed with 

unmodified or SA-FasL engineered spleen cells or SA-FasL engineered CD25-deplete 

spleen cells. Animals were monitored for signs of  acute GVHD and survival. For 

survival curve comparison, log-rank (Mantel-Cox) test was used. *p <0.05**p < 0.01 
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SA-FasL engineering of human PBMCs abrogates acute GVHD in a humanized 

mouse model.  

To extend the observed effect of SA-FasL engineering on human immune response, 

we first performed in vivo tracking of human cells using NOD-scid-IL2γRnull (NSG) model. 

Neutrophil depleted human PBMC were engineered with SA-FasL or SA (control protein). 

NSG recipients were irradiated at 200 cGy followed by i.v injection of 5x106 SA- or SA-

FasL engineered human PBMCs. When analyzed 5 days post infusion, spleen of SA- 

recipients had significantly greater number (Fig. 21A) as well as frequency (Fig. 20) of 

total human cells and human T cells as compared with SA-FasL group. Importantly, we 

observed a similar pattern in the liver (Fig. 21A and 20), a major target in human PBMC 

induced xenogeneic GVHD. Following this observation, we established a model of acute 

xenogeneic GVHD by transferring human PBMC, adapted from King et al.148. When 200 

cGy preconditioned NSG animals were infused with 10 x106 human PBMC, animals 

developed clinical signs of GVHD by day 14, including significant weight loss, hunched 

posture, ruffled fur and reduced motion with median survival time of 15 days (Fig. 21B). 

Delivery of SA-engineered human PBMCs had similar trend of developing fatal GVHD 

with median survival time of 15 days (Fig. 21B). However, engineering the human PBMCs 

with SA-FasL before transfusion significantly extended the survival (p<0.0001) with 

27.67% of animals surviving for >60 days (Fig. 21B). There was a significant delay in the 

onset of GVHD with significant body weight loss by day 25 as compared with day 13 for 

the SA group. Taken together, these data suggest that engineering alloreactive T cells with 

SA-FasL is an efficient strategy to eliminate pathogenic cells to mitigate fatal acute GVHD 

in a xenogeneic humanized NSG model.  
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Figure 20. Frequency of human immune cells recovered from preconditioned NSG 

animals. Preconditioned (200 cGy) NSG animals were transplanted with SA or SA-FasL 

engineered human PBMC. After 5 days post transplantation, spleen and liver of NSG 

recipients were analyzed for human immune cells by flow cytometry. For comparison of 

means, unpaired two tailed T- test was used. Data shown as mean ± SEM. *p <0.05**p < 

0.01 
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Figure 21. SA-FasL engineering eliminates activated human PBMCs and abrogates 

xenogeneic GVHD. (A) Absolute number of human cells recovered from preconditioned 

NSG animals. NSG animals were preconditioned at 200 cGy and SA or SA-FasL 
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engineered neutrophil depleted PBMCs were i.v injected. After 5 days post injection, 

spleen and liver were analyzed by flow cytometry. Data pooled from three independent 

experiments. (B) Xenogeneic GVHD is prevented from SA-FasL engineered PBMCs. 

Preconditioned NSG animals (200 cGy) were transplanted with unmodifed or SA/SA-FasL 

engineered human PBMC. Animals were followed for development of xenogeneic GVHD. 

For comparison of means, unpaired two tailed t-test was used in (A). For survival curve 

comparison log-rank (Mantel Cox) test was used. Data shown as mean ± SEM. *p <0.05**, 

p < 0.01, ***p < 0.001, ****p <0.0001 
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Discussion 

Despite various preventive strategies being implemented in the clinic for 

modulation of pathogenic function of alloreactive donor T cells, significant incidence of 

acute GVHD remains a challenge and limits the broad application of HSCT as a therapeutic 

modality for various disorders. Clinically, the major challenge is to reduce the severity of 

GVHD without simultaneously compromising the beneficial effects of T cell mediated 

immune responses. We herein describe a novel strategy to physically deplete alloreactive 

T cells in vivo as an effective means of preventing acute GVHD in a mouse model 

simulating HSCT in haploidentical clinical setting. We employed Fas/FasL mediated 

AICD as a strategy to specifically purge out alloreactive T effector cells to prevent acute 

GVH. AICD via Fas/FasL pathway is an important homeostasis mechanism to limit clonal 

expansion of activated T cells at the down phase of immune responses. AICD has been 

demonstrated in human and murine T cells following activation and plays a vital role in 

the maintenance of peripheral T cell tolerance35,36,128,159. Mature T cells acquire specific 

AICD susceptibility after prolonged activation and are dependent on repetitive TCR 

engagement with the antigen and cell cycle progression, thus spearing resting T 

cells34,136,160. Using the ProtExTM platform technology pioneered in our lab145, we 

engineered donor T cells to transiently display on their surface a novel from of the Fas 

death ligand, FasL,  molecule chimeric with a modified form of streptavidin, SA-FasL.  

Our collective results show that this strategy efficiently depletes activated alloreactive T 

cells, resulting in the prevention of lethal acute GVHD in an allogeneic and a humanized 

mouse model. 
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T cells were effectively engineered with SA-FasL and underwent apoptosis 

following activation by alloantigens both in vitro and in vivo.  Coculture of SA-FasL-

engineered alloreactive T cells with unmodified cells in a mixed lymphocyte in vitro study 

demonstrated that apoptosis occurs primarily through an autocrine fashion by engagement 

of SA-FasL with Fas receptor on the same T cells.  Importantly, SA-FasL was effective at 

femtogram levels in the elimination of alloreactive T effector cells in vivo.  These 

observations are consistent with reports by others demonstrating that membranous, but not 

soluble, FasL is effective in the induction of apoptosis by crosslinking Fas receptor161.  Our 

published and unpublished studies in solid organ and islet transplantation models129-131 

using SA-FasL also corroborate the present findings. Interestingly, SA-FasL also 

eliminates donor Treg cells in our model.  A study by Fritzsching et al.144 demonstrated 

that freshly isolated naive Treg cells (CD4+CD25+FoxP3+) have higher susceptibility to 

Fas-mediated apoptosis post TCR restimulation confers resistance to Fas-mediated 

apoptosis in contrast to T effector cells. This suggest that SA-FasL on Treg cells provides 

apoptotic signals early on before this cell population being activated, whereas SA-FasL 

deliver apoptotic signals in T effector cells after TCR activation.  

We then established a clinically relevant parent (C57BL/6, H-2b) to F1 

(C57BL/6xBALB/c, H-2b/d) haploidentical HSCT model. In as much as transplantation of 

whole bone marrow cells into a lethally irradiated mouse does not develop GVHD, unlike 

rats and humans, we admixed bone marrow cells with autologous splenocytes and 

demonstrated the transplantation of this cell mixture from C57BL/6 into lethally irradiated 

F1 recipients resulted in acute GVHD.  Using this model, we demonstrated that donor cells 

containing splenocytes engineered with SA-FasL was effective in preventing acute GVHD, 
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whereas all mice receiving SA control protein engineered cells showed classical signs of 

GCHD, including hunched posture, decrease in mobility, ruffled fur and skin rashes along 

with diarrhea, and succumbed to acute GVHD and expired. As a prelude to clinical 

translation of this approach, we also demonstrated that human T cells engineered with SA-

FasL underwent apoptosis in response to mouse xenoantigens in vivo that resulted in 

significant protection against acute GVHD.  

Alloreactive T cells mediated destruction of primary and secondary lymphoid 

organs is a good indicator of acute GVHD and is responsible for the lack of immune 

reconstitution following HSCT in conditioned recipients162. Inefficient immune 

reconstitution contributes to frequent opportunistic infections and relapse.  When long term 

surviving animals (>100 days) were analyzed for immune composition, they were fully 

donor chimeric with efficient engraftment and better frequency of immune cell components 

as compared with long term surviving animals that received only bone marrow cells, but 

not GHVD causing spleen cells. Efficient immune competency was further confirmed by 

demonstrating that long term survivors rejected third party, but not those animals that 

received donor skin allografts.  These findings also indicate that SA-FasL selectively 

purges out alloreactive T cells, leading to systemic tolerance to donor alloantigens, but 

preserves non-alloreactive T cells so that they generate an effective immune response to 

donor-unrelated antigens.   

Clinical GVHD involves significant target tissue tropism that includes recognition 

of either major or minor histocompatibility antigens followed by proliferation in lymphoid 

organs and target tissue infiltration resulting in significant tissue damage. Multiple studies 

suggest that the GVHD progression is highly time sensitive. Allogeneic T cell activation 
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occurs in several lymphoid organs at early time point (afferent phase day 6) followed by 

dramatic expansion of effector T cells163,164. Activation of alloreactive T cells occurs in 

draining lymph nodes rather than peripheral lymph nodes. Clinical significance is 

supported by the inability of memory T cells to induce lethal acute GVHD165, despite their 

ability to alloreactivity as naïve T cells. Furthermore, CD62L+ Treg, but not CD62L- , cells 

are capable of suppressing acute GVHD in vivo, despite both cells being able to suppress 

alloreactive T cell proliferation in vitro166,167.  Study by Nguyen et al.167 suggested that 

alloreactive T cells had similar pattern of early activation, proliferation and localization 

with respect to Treg cells. However, persistent BLI (bioluminescence imaging) signals 

indicated that proliferation of alloreactive T cells continued to increase in lymphoid tissues 

and target organs in parallel with development of signs of GVHD. In addition, they show 

that Treg cells as cellular therapy to prevent acute GVHD is time and dose dependent, such 

that earlier infusion of Treg cells led to greater reduction of effector T cells proliferation 

and better survival. The observed protective effect is dose dependent requiring higher doses 

of Treg cells to reverse established inflammation. In our study, SA-FasL engineering 

induced apoptosis of alloreactive T cells post infusion, thus significantly reducing their 

number and thereby limiting their proliferation. When analyzed at day 21 post 

transplantation (effector GVHD phase), SA-FasL-spleen cells recipient had significantly 

less activated CD4+ and CD8+ T cells, but these animals also had substantially less Treg 

cells. The Treg/T effector ratio is a critical determinant of suppression; however, SA-FasL-

spleen and unmanipulated spleen recipients had similar level of Treg/activated T effector 

ratios.  However, the depletion of donor Treg cells before transplantation negated the 
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beneficial effect of SA-FasL, providing direct evidence that Treg cells play a critical role 

in our model.   

The source of discrepancy between the transplantation of Treg-depleted cells and 

phenotyping at day 21 post-transplantation in our model is unknown and may be due to 

several factors. First, FoxP3 as a canonical marker of Treg cells does not define their 

regulatory capacity.  Treg cells show plasticity dictated by the nature of the 

microenvironment they function in.  In particular, Treg cells can assume pathogenic 

functions in response to excessive inflammation. IFN-γ has been shown to limit Treg cell 

function168 and acute GVHD is characterized by a highly inflammatory state. Expression 

of FoxP3, a master regulator of Treg cells, alone is not adequate for functional stability. 

The suppressive function of these cell population is well correlated with DNA methylation 

status of FoxP3 CNS2 region169. Acute GVHD has been considered a Th1-type disease 

dominated by cytotoxic T cell mediated pathology with increased production of Th1 

cytokines. When analyzed by qRT-PCR, SA-FasL-spleen recipients had significantly less 

Th1 phenotype (T-bet, IFN-γ, TNF-α) and other proinflammatory mediators (IL-6) than 

control groups. Instead, SA-FasL-spleen recipients had skewed differentiation with 

upregulated IL-4, GATA-3 and RORγt. This is in line with previous reports demonstrating 

that the depletion of alloreactive Th1 T cells by AICD polarizes the residual CD4+ T cells 

to a Th2 phenotype, which may protect against acute GVHD52,170. Treg cells has been 

implicated in therapeutic role to prevent acute GVHD. However, significant number of 

Treg cells needs to be infused and multiple experimental protocol for ex vivo expansion of 

donor Treg cells are under trial53,171. Interestingly, CD25+ Treg cells were still 

indispensable in the preventive strategy despite the significant elimination of alloreactive 
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cells in vivo. This observation is similar to the high dose post-transplant cyclophosphamide 

strategy that requires Treg cells for its preventive effect172. 

In conclusion, we demonstrate human and mouse T cells can efficiently be 

engineered with SA-FasL protein in a practical and clinically applicable manner and that 

this strategy is effective in preventing acute GVHD in two clinically relevant settings, 

myeloablative haploidentical and humanize mouse models. Engineering donor graft with 

SA-FasL provides efficient, attractive and facile means of modulating immune response to 

prevent lethal acute GVHD with significant translational potential.
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CHAPTER 3

PANCREATIC ISLETS SURFACE ENGINEERED WITH CD47 INNATE IMMUNE 

CHECKPOINT SHOW ENHANCED ENGRAFTMENT FOLLOWING 

INTRAPORTAL ISLET TRANSPLANTATION 

 

 

Introduction 

Islet transplantation is an important β-cell replacement therapy for refractory 

chronic pancreatitis and type 1 diabetes (T1D). A major limitation to clinical beta cell 

replacement therapy is a significant loss of islets immediate post-transplantation triggered 

by instant blood mediated inflammatory reaction (IBMIR)173,174. IBMIR is initiated when 

islets come into direct contact with the recipient blood following intraportal infusion and 

is responsible for the loss of 50-70% of the initial islet mass175,176. IBMIR is characterized 

by the activation of coagulation cascade, complement activation, and infiltration of 

myeloid cells that express various inflammatory mediators that result in the destruction of 

islets80,84.  Tissue factor (TF) and various other proinflammatory cytokines and 

chemokines, such as IL-1, IP-10, IL-6, CXCL8, CXCL10, CCL2, expressed by islets or 

resident antigen presenting cells trigger IBMIR79,84,88,177,178. As such, insulin independence 

rate for autologous islet transplantation at 5 years can be as low as 10% and multiple 

infusions of islets from different donors may be required to achieve insulin independence 

in recipients of allogeneic islet grafts179,180. Therefore, effective control of IBMIR will 

overcome an important limitation of clinical islet transplantation. 
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CD47 is a ubiquitously expressed transmembrane glycoprotein of the 

immunoglobulin superfamily that serves as a ligand for the signal regulatory protein alpha 

(SIRPα), an immune inhibitory receptor, expressed on the surface of myeloid cells119. The 

interaction of CD47 with SIRPα serves an  important innate immune checkpoint that 

delivers a “don’t-eat-me” signal and acts as a critical regulator of “marker of self”119.  The 

importance of CD47/SIRPα axis in self-recognition and inhibition of phagocytosis by 

macrophages was demonstrated by rapid clearance of red blood cells genetically modified 

to lack CD47 expression following infusion into CD47 competent syngeneic mice110.   

CD47-SIRPα pathway has been implicated in the regulation of both innate and 

adaptive immune responses. The system negatively regulates macrophage activation and 

phagocytosis119, adhesion and activation of platelets and neutrophils116, attenuation of 

antibody-dependent cell-mediated cytotoxicity/phagocytosis (ADCC/ADCP)181,182, and 

adaptive immune responses183-185. These functional features of CD47 were shown to be 

extensively exploited for immune evasion by various tumors that highlighted the potential 

of CD47-SIRPα axis as an important target for cancer immunotherapy186.  Indeed, various 

tumor cells were shown to have elevated levels of CD47 expression and its blockade using 

antibodies resulted in effective therapy in preclinical cancer models that led to current 

efforts to test this innate immune checkpoint blockade for cancer immunotherapy in the 

clinic186-189.  

CD47/SIRPα pathway has been shown to play a critical role in innate allo- and 

xeno-recognition, independent of adaptive immunity190,191.  Polymorphism in the SIRPα 

that alters the binding strength of CD47 is associated with rapid clearance of various 

cellular grafts, including hepatocytes120,185, insulinoma cells192, and hematopoietic stem 
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cells108,193,194.  Ectopic expression of recipient CD47 in porcine cells blocks their 

phagocytosis by human macrophages195. Similarly, hematopoietic cells from swine 

genetically modified to express human CD47 showed enhanced engraftment in a 

humanized mouse model of transplantation196.  

Given the demonstrated role of CD47-SIRPα axis as innate immune checkpoint, 

we hypothesized that CD47 can be used to enhance syngeneic islet engraftment by 

mitigating IBMIR. We herein report the generation of a novel form of SA-CD47 molecule 

and demonstrate for the first time that that the transient display of CD47 protein on the 

surface of islets enhance engraftment and long-term function in a minimal mass intraportal 

islet transplantation mouse model by mitigating IBMIR.  The rapid and transient display 

of SA-CD47 protein on the surface of tissues and cells to mitigate IBMIR provides a facile 

and clinically applicable platform with significant translational potential for transplantation 

of various tissue and cellular grafts. 

 

Materials and Methods 

Animals 

C57BL/6 (CD45.2, H2Kb) mice were purchased from Jackson Laboratory. Animals were 

bred and maintained in our specific pathogen-free animal barrier facility at the University 

of Louisville, KY. All experiments were performed in accordance with the policies of the 

NIH for Guide for the Care and Use of Laboratory Animals and protocols approved by the 

University of Louisville Animal Care and Use Committee. 
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Construction, production, and physical characterization of SA-CD47 protein 

A synthetic gene encoding the extracellular domain of CD47 (19-161 bp; GI: AB012693.1) 

of C57BL/6 murine strain was subcloned C-terminus to a modified form of streptavidin in 

the drosophila pMT/BiP/V5-His CuSO4-inducible expression vector (Fig. 1)145.  

Drosophila S2 cells were transfected with the construct using the Celfectin II transfection 

system (Invitrogen) to establish stable transfectants.  SA-CD47 expression was induced 

using 1 mM CuSO4, culture medium was collected 3 days later, and the protein was purified 

using a metal-ion charged sepharose column taking the advantage of the 6xHis tag 

engineered into the C-terminus (GE, Amersham). Purified protein was characterized using 

SDS-PAGE and Western blot analysis per published protocols130,145. 

 

Cell surface engineering with SA-CD47 protein 

Spleens from C57BL/6 or Lewis rat were harvested and processed into single-cell 

suspension using frosted slides. Red blood cells were lysed using a home-made buffered 

ammonium chloride solution. SA-CD47 engineering of spleen cells was done following 

previously reported protocol131. Cell surface was modified with biotin by incibation in 5 

µM EZ-LinkTM Sulfo-NHS-LC biotin (hereafter referred to as biotin) solution (Pierce) in 

sterile PBS at room temperature for 30 mins. Cells were then washed twice with sterile 

PBS followed by incubation with 200 ng SA-CD47 or an equimolar amount of SA protein 

per 106 cells at a final volume of 500 µl of sterile PBS for 30 mins in a cold room by 

constant rocking. Cells were then washed and analyzed for the presence of biotin and SA-

CD47 on the cell surface by staining with streptavidin-allophycocyanin (APC) and APC-

labelled anti-mouse CD47, respectively, using flow cytometry.  
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In vitro phagocytosis assay 

In vitro phagocytosis assay was done as described before112,183. Briefly, SA- and SA-CD47 

engineered rat spleen cells were labeled with 2.5 μM carboxyfluorescein succinimidyl ester 

(CFSE, Thermo Fisher Scientific) or 2.5 μM Cell Trace Violet (CTV, Thermo Fisher 

Scientific), respectively, according to manufacturer’s protocol and resuspended in 

complete RPMI (RPMI 1640 supplemented with 10% FBS, Penicillin/ Streptomycin and 

2 mM L-Glutamine). For single culture assay, SA-rat spleen cells or SA-CD47-rat spleen 

cells (2.5 X 106/ well) were cultured with mouse RAW 264.7 macrophage-like cell line 

(0.5 X 106/well). For mixed culture settings, both fluorescence labeled target cells were 

mixed in a 1:1 ratio followed by co-culture (2.5 X 106 cells/well) with RAW 264.7 cells 

(0.5 X 106/well). Post incubation non-engulfed cells were washed, and adherent RAW cells 

were harvested and stained with anti-CD11b antibody prior to flow cytometric analysis. 

Phagocytosis assessed by measuring % of double positive macrophages (CD11b+ CFSE+ 

or CD11b+ CTV+). 

 

Pancreatic islet isolation, engineering, and functional analysis 

Islet isolation was performed using LiberaseTL enzyme (Roche) according to a standard 

protocol128,130.  Islets were engineered with the SA-CD47 or SA as a control protein by 

incubating first in 5 μM biotin then with the indicated amount of protein for 30 mins130,145. 

Alamar blue (AB, Thermo Fisher scientific) assay, that incorporates redox reagent that 

changes color when reduced in response to metabolic activity, was used to assess the effect 

of SA-CD47 engineering on viability and metabolic activity of islets197. Briefly, 100 
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unmodified naïve or SA-CD47-engineered islets were cultured in complete RPMI media 

supplemented with 10% AB reagent in a 96-well plate. After 6 hours of incubation, the 

reduced form of reagent soluble in the solution was measured as absorbance at a 

wavelength of 562 nm on SpectraMax microplate reader (Molecular Devices).  

 

Glucose-stimulated insulin secretion (GSIS) assay 

A static incubation protocol for GSIS assay was performed to assess whether engineering 

with SA-CD47 impacts islet function. Naïve islets or SA-CD47-engineered islets (100 

islets per transwell) were incubated at 3 mM glucose solution, prepared in Krebs ringer 

bicarbonate buffer, for 1 hour for equilibration in a transwell (Millicell, Merck). The 

transwell was then drained and transferred to a new low glucose solution well, incubated 

for 1 hour, and the solution was collected as low-glucose insulin secretion. The transwell 

was then transferred to a high glucose solution (11 mM) well, incubated for 1 hour, and the 

solution was collected as high-glucose insulin secretion. The insulin content was analyzed 

by murine insulin ELISA kit (Mercodia). The stimulation index (SI) was calculated as a 

ratio of insulin secreted in high to low glucose stimulation.  

 

Pancreatic islet transplantation and glucose tolerance test 

The impact of SA-CD47 on the modulation of IBMIR and islet engraftment was assessed 

in a minimal mass intraportal model.  Four days before transplantation, male C57BL/6 

mice (10-14 wks-old) were rendered diabetic by single intravenous injection of 

streptozotocin (200 mg/kg, Sigma-Aldrich). Blood glucose level were obtained using a 



www.manaraa.com

81 
 

portable glucose meter (Roche, AccuCheck). Animals with two consecutive non-fasting 

blood glucose readings of > 250 mg/dl were considered diabetic and used for intraportal 

transplantation. Each diabetic recipient was transplanted with 125 SA- or SA-CD47-

engineerd islets via portal vein.  Animals were monitored for blood glucose levels twice a 

week. Long-term graft recipients with normoglycemia were subjected to a standard 

intraperitoneal glucose tolerance test (IPGTT).  Briefly, animals were injected 

intraperitoneally with glucose bolus (2 mg/kg) after 6 hrs of fasting and monitored for 

blood glucose levels at various time points (0, 10, 20, 30, 45, 60, 90, 120, 150 mins). Naïve 

C57BL/6 mice were used as controls for IPGTT. 

 

Isolation of intrahepatic immune cells 

Intrahepatic immune cells were isolated using mechanical disruption as previously 

described198. Briefly, after euthanasia, cardiac perfusion was performed with 10 ml of 

sterile, cold saline. Mechanical disruption was done using frosted slides (in HBSS) 

followed by repeated passing through a18-G needle. The suspension was centrifuged at 

500 rpm for 1 min and supernatant was transferred to a new tube and centrifuged at 1400 

rpm for 10 min. The pellet was resuspended in complete RPMI, filtered, and processed for 

flow cytometry analysis. 

 

Flow cytometry and antibodies 

The optimal concentration for all fluorochrome-conjugated antibodies was determined by 

titration. Antibodies clones specific against mouse CD45.2 (eBiosciences, 12-0454-82), 
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CD11b (BD Biosciences, 550993), Ly6C (Biolegend, 128036), Ly6G (Biolegend, 

127606), F4/80 (Biolegend, 123122), Gr1 (eBiosciences, 48-5931) were used. For surface 

staining, cells were first incubated with Fc blocking antibody (anti CD16/32, Biolegend) 

for 10 min at 4° C followed by incubation with surface antibodies for 30 min at 4° C. The 

cells were analyzed by BD LSR II and Flow jo (Tree Star, CA). 

In vitro tube model of islet-blood interactions 

In vitro tube model to mimic IBMIR was performed as described 173. Fresh autologous 

blood was harvested and collected in heparin-coated 1.5 ml Eppendorf tubes. SA- or SA-

CD47-engineered islets (100 islets) were mixed and incubated with 500 µl of blood 

(without any additional heparin). Tubes were incubated in a rotator at 37 °C incubator for 

3 hrs. Post incubation, serum was collected, and blood-islet clots were preserved in 10% 

Neutral Buffered Formalin (NBF, source) followed by paraffin embedding for histological 

analysis. 

RNA isolation and quantitative real-time PCR 

Total RNA was extracted from the liver tissues or islet-thrombus using TRIzol reagents 

(Invitrogen Corporation, USA) according to the manufacturer’s instructions. Total RNA 

was quantified using a NanoDrop ND-2000c spectrophotometer (Thermo Fisher Scientific, 

Inc.). In addition, cDNA was reverse transcribed from total RNA (2 µg) using SuperScript 

IV VILO cDNA Master Mix (Thermo Fisher Scientific, USA) with the following thermal 

conditions: 25 °C 10 min; 50 °C 10 min; and 85 °C 5 min. qRT-PCR was performed using 

validated TaqMan Gene Expression Assays (Table 1) according to the manufacturer’s 

instruction on Quant Studio 3 RT-PCR system (Thermo Fisher Scientific. USA).   
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Table 4. TaqMan gene expression assay for islet graft analysis 

Gene symbol Assay ID 

F3 (TF) Mm00438855_m1 

 

IL1b Mm00434228_m1 

MCP-1 Mm00441242_m1 

NF-KB (p65) Mm00501346_m1 

GAPDH Mm99999915_21 

HMGB1 Mm00849805_gH 

 

Histological analysis 

Paraffin-embedded clots were cut into 4 µm thickness, H&E stained, and then graded for 

parameters as described199. Grade 0: intact islet morphology with uniform nuclear 

distribution without any fragments/fractures. Grade 1, intact islet morphology with uniform 

nuclear distribution with minimal fragments/fractures; Grade 2, disrupted morphology with 

non-uniform nuclear distribution with significant fragments/fractures along with necrotic 

patches; and Grade 3, significant disruption of morphology with loss in nuclei and 

significant necrotic patches. 

For immunohistochemical analysis, islets bearing liver sections or islets clots retrieved 

from in vitro tube assay were paraffin-embedded, then sectioned at 4 µm thickness on a 

microtome (Leica). The sections were dewaxed and processed for histological evaluation 

as reported87,90,199. Sections were stained with anti CD11b (Novus biologicals, NB600-137) 
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or anti-insulin (Dako, A0564) or Hoechst (Molecular probes, H-3570). Fluorescent images 

were obtained using a Leica confocal microscopy. 

 

Statistical analysis 

All data sets were analyzed using Graph pad prism v.7 (GraphPad Inc. CA) and expressed 

as mean ± SEM. Mean comparison between the groups was performed by using Student’s 

t-test. Survival curves were compared using the Log-rank test (Mantel-Cox) statistical 

method. p < 0.05 was considered significant.  
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Results 

Generation and characterization of chimeric SA-CD47 protein 

Transient and positional display of recombinant protein ligands to immune 

receptors on the cell surface provides a practical and potentially safe alternative to ectopic 

gene expression for immunomodulation. We have developed the concept of generating 

recombinant immunological ligands with a modified form of core streptavidin and their 

transient and positional display on the surface of biotinylated cells and tissues for 

immunomodulation with demonstrated efficacy in autoimmunity, transplantation, and 

cancer settings129,200-204.  Using this scheme, we herein designed a synthetic gene encoding 

the extracellular domain of mouse CD47 (aa 19-161), required for binding and signal 

transduction through SIRPα, and a modified form of core streptavidin (SA).   The chimeric 

gene was cloned into the Drosophila copper sulfate-inducible pMT/BiP/V5-HisA 

expression vector with an N-terminal secretion signal sequence (BiP) and a hexahistidine 

tag (6xHis; Figure 22A).  Drosophila S2 cells stably transfected with the construct used 

for protein expression and purification using a metal affinity chromatography as we 

reported previously129. SA-CD47 was run as a ~37 kDa protein in denaturing SDS-PAGE 

when the samples were heated at 100o C and as > 250 kDa oligomers without heat treatment 

(Figure 22B), consistent with the reported structural feature of native streptavidin145. 

Western blot analysis using anti-SA antibody confirmed the identity of the protein (Figure 

22C). 
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Figure 22. Cloning, expression, and structural characterization of SA-CD47 protein. 

(A) Schematic representation of SA-CD47 construct. A synthetic chimeric gene encoding 

the extracellular domain of mouse CD47 N-terminus to core streptavidin (SA) with flexible 

linkers and a 6xHis tag to facilitate protein purification was subcloned into the CuSO4-

inducible pMT-Bip-V5-HisA S2 insect cell expression vector. (B) SDS-PAGE profile of 

the purified SA-CD47 protein. The protein was purified from culture supernatant of S2 

stable transfectants using immobilized metal affinity chromatography and analyzed using 

SDS-PAGE after heating the samples at 100 oC (H) or without heat (NH). (C) Western blot 

profile of SA-CD47 using antibodies against streptavidin. The SA-CD47 chimeric protein 

runs as a single monomeric band (~ 37 kDa) with heat and as oligomers (> 250 kDa) 

without heat. 
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Effective engineering of islets with SA-CD47 protein without negatively impacting 

their viability or function 

We next employed engineering of mouse spleen cells as a flexible and quantitative 

platform to assess the function of streptavidin domain of chimeric SA-CD47 protein for 

binding biotinylated surfaces145.  Mouse spleen cells were first modified to attach a reactive 

biotin to the cell surface through NHS ester crosslinking followed by engineering with 

various concentrations of the SA-CD47 protein. There was a dose-dependent attachment 

of SA-CD47 to the surface of biotinylated cells that reached a plateau at 320 ng protein/106 

cells (⁓ 99 % of live cells with a mean MFI of 6260) as assessed by flow cytometry (Figure 

23 and 24A).   

We next tested if pancreatic islets can be engineered with SA-CD47 without a 

detrimental effect on islet viability and function. C57BL/6 mouse islets were surface 

modified with biotin (5 μM) followed by engineering with SA-CD47 protein (400 ng/125 

islets). Confocal microscopic analysis of islets using an anti-CD47 Ab demonstrated dense 

display of the protein on the surface (Figure 24B). Islets were analyzed for viability and 

metabolic activity using Alamar Blue (AB) assay to ensure the lack of a detrimental effect 

due to SA-CD47 engineering. Viable and metabolically active cells reduce resazurin, a 

component of AB, to resorufin by mitochondrial enzymes197. The degree of redox reaction 

is an indicator of the metabolic activity of viable cells197. After incubation for 6 hrs in AB, 

there was no significant difference in the level of reduced resorufin between SA-CD47-

engineered islets and unmodified control islets (Figure 24C), demonstrating lack of a 

detrimental effect causing by engineering. This observation was further corroborated with 

FDA/PI viability assay performed 24 hr post-engineering. Confocal microscopy analysis 
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revealed that the majority of SA-CD47-engineered islets (> 90%) were intact and viable as 

indicated by bright FDA staining (Figure 24D).  Engineered islets were also 

morphologically intact without any hypoxic centers (Figure 25). GSIS assay also showed 

comparable levels of functional fitness between SA-CD47-engineered islets and 

unmodified control islets in insulin secretion (Figure 24E).  Importantly, no difference in 

stimulation indices of SA-CD47-islets and unmodified islets were observed (Figure 24E). 

Taken together, these results demonstrate that pancreatic islets can be efficiently 

engineered to display the SA-CD47 protein on their surface without a negative impact on 

their viability, metabolic activity, and insulin secretion function. 
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Figure 23. Representative histogram overlay plot of spleen cells engineered with SA-

CD47 protein. Spleen cells were biotinylated (5 µM) and then engineered with SA-

CD47 protein at the indicated concentrations (ng protein/106 cells). Histograms in color 

show the fluorescence intensity (MFI) at respective engineering levels.  
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Figure 24. Effective engineering of islets with SA-CD47 protein without a negative 

impact on their viability or function. (A) Assessment of cell surface engineering with 

SA-CD47 protein. Spleen cells were biotinylated in 5 μM EZ-Link Sulfo-NHS-LC-Biotin 

followed by engineering with the indicated amounts of the SA-CD47 protein (ng/106 cells).  

The levels of chimeric protein on the cell surface was assessed using an anti-CD47 

antibody in flow cytometry. The MFI values as a function of protein concentrations from 

three independent experiments are graphed (B) Representative image of islet engineered 

with SA-CD47 protein. Mouse islets were biotinylated (5 μM) followed by engineering 

with SA-CD47 protein (400 ng/125 islets). The levels of biotin and CD47 molecules were 

assessed using SA conjugated PE (SA-PE; green) and an antibody against CD47 (anti-

CD47 APC; red), respectively, in confocal microscopy. (C) Engineering with SA-CD47 



www.manaraa.com

91 
 

protein does not impact islet viability and metabolic activity. SA-CD47-engineered islets 

(SA-CD47-islet) or unmodified naïve islets (Islet) were incubated with alamar blue reagent 

for 6 hours at 37°C. The level of alamar blue reduction was measured as absorbance at 562 

nm. Data are from two independent experiments. (D) FDA/PI viability test showing lack 

of a detrimental effect of engineering on islets. Representative live/dead confocal 

microscopy images of unmodified and SA-CD47-engineered islets 24 hours post 

engineering (green = live; red = dead). A total of 47 unmodified (Islet) and 40 engineered 

(SA-CD47-islet) islets were analyzed for viability. (E) Glucose-induced insulin secretion 

assay showing functional fitness of SA-CD47-engineered islets. Data expressed as mean ± 

SEM. For comparison of means, an unpaired t-test was used for C, D and E. ns, not 

significant. 
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Figure 25. Bright field images showing integrity of SA-CD47-engineered islets.  

Unmodified (control, left) and SA-CD47-engineered islets (right) were cultured for 24 

hours post engineering and then imaged. 
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SA-CD47-engineered xenogeneic cells are refractory to phagocytosis by 

macrophages. 

CD47 expressed on autologous cells deliver a “don’t eat me” signal through SIRPα, 

a negative regulator of phagocytosis, expressed on macrophages and dendritic cells119.  

Interaction of CD47 with SIRPα is species-specific and dictates the phagosome 

formation205. Thus, we assessed the anti-phagocytic function of SA-CD47 in a standard 

xenogeneic in vitro phagocytosis assay112,183.  Rat splenocytes were engineered with SA-

CD47 or SA as a control protein (Figure 26A) and then labeled with the fluorescence dyes 

CTV or CFSE, respectively.  Coculturing these cells with the mouse RAW 264.7 

macrophage cell line demonstrated significant (p = 0.0088) phagocytosis of SA-engineered 

rat cells over SA-CD47-engineered cells (Figures 26B and 27). To further corroborate this 

observation, we performed competitive phagocytosis assay in mixed culture settings where 

RAW 264.7 cells were co-cultured in the presence of both target cells labelled with 

different fluorescence dyes. Mouse macrophage preferentially phagocytosed SA-rat spleen 

cells (Figures 26C and 27). Collectively, these results demonstrate that the SA-CD47 

protein is functional and when displayed on target cells prevents phagocytosis by 

macrophages. 
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Figure 26. SA-CD47 protein on xenogeneic cells prevents phagocytosis by 

macrophages. (A) A representative histogram of rat splenocytes engineered with the SA-

CD47 protein. Rat splenocytes engineered with the SA-CD47 protein (200 ng/106 cells) 

were analyzed using an antibody against mouse CD47 in flow cytometry (dark line open 

histogram) with unmodified cells (gray shaded histogram) serving as control. (B) SA-

CD47 inhibits phagocytosis of rat splenocytes by macrophages. Mouse RAW 264.7 

macrophage cells were cultured with CFSE-labelled SA-engineered rat splenocytes or 

CTV-labelled SA-CD47-enginered rat splenocytes at 1:5 ratio. After 18 hours of 

incubation, cells were analyzed by flow cytometry by gating on CD11b+CFSE+ or 

CD11b+CTV+ as percent phagocytosis.  (C) Assessment of phagocytosis in mixed cultures. 

Rat cells engineered with SA and SA-CD47, and labelled with CFSE and CTV, 

respectively, were mixed at 1:1 ratio and then co-cultured with RAW 264.7 cells under the 

same conditions for (B). Phagocytosis of rat cells by macrophages was assessed using flow 
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cytometry. Data shown as mean ± SEM of three independent experiments. *p <0.05, **p 

<0.01; two-tailed unpaired t-test. 

 

 

 

 

 

 

 

 

 

 

 

Figure 27. Representative flow plots of in vitro phagocytosis assay. SA-CD47-

engineerd rat splenocytes (CTV labelled) are more refractory to phagocytosis by mouse 

macrophages as compared with SA-engineered cells in single or competitive mixed culture 

settings.  
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SA-CD47 protects islets and prevents intra-islet infiltration of CD11b+ cells in an in 

vitro loop assay. 

First, to understand the potential role of CD47 in protection of islets from IBMIR 

mediated destruction, we performed a modified in vitro loop assay for islet-blood 

interaction 173. Engineering with SA-CD47 did not prevent fibrin deposition or thrombosis 

after incubation with blood. However, histological analysis of the islet-thrombus revealed 

relatively intact SA-CD47-engineered islets, whereas SA-engineered islets had significant 

(p = 0.0128) destruction (Figure 28A). Intact islets with regular morphology with uniform 

distribution of nuclei (Grade 0) were more common in SA-CD47-engineered islets (40%) 

as compared with the SA-engineered control group (25%) (Figure 28A). SA-engineered 

group had more Grade 2 islets with disrupted morphology with necrotic centers and Grade 

3 islets with highly disrupted morphology as compared with SA-CD47-engineered group 

(Grade 2: 25% vs. 18%; Grade 3: 24% vs. 11%).  Immunofluorescence analysis of islet-

thrombus sections demonstrated significantly (p = 0.0244) higher infiltration of CD11b+ 

cells in SA-engineered islets as compared with SA-CD47 group (Figure 28B and 29). 

Collectively, these results show that SA-CD47 protects islets from IBMIR mediated 

disruption, potentially by inhibiting the intraislet infiltration of inflammatory cells. 
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Figure 28. SA-CD47 engineering protects islets from destruction by IBMIR in an in 

vitro loop assay. (A) Histological grading of islets 3 hours post in vitro loop assay indicates 

SA-CD47-engineered islets are protected from blood mediated destruction as compared 

with SA-engineered control islets. Frequency distribution between the groups was 

analyzed by chi-square test. (B) Immunofluorescence analysis for intra-islet CD11b+ 

inflammatory cells. SA-CD47-engineered islets had significantly less infiltration of 

CD11b+ granulocytes/macrophages as compared to SA-engineered islets. Data pooled 

from three independent experiments and represented as mean ± SEM. Data means 

compared by unpaired two-tailed t-test. * p < 0.05. 
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Figure 29. Representative confocal images for CD11b negative staining. Tissue 

sections were stained with Hoechst, insulin but without CD11b for specificity of anti 

CD11b antibody (scale bar = 50 μm).  
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SA-CD47-engineered islets show enhanced engraftment and function following 

intraportal transplantation   

Instant blood-mediated inflammatory reaction (IBMIR) occurs following the 

exposure of islet grafts to recipient blood and is responsible for 50-70% of islet loss 

immediate post intraportal transplantation79,173.  Phagocytes play an important role in 

IBMIR80,84,87,173. To assess the impact of SA-CD47 as an inhibitor of phagocytosis on islet 

engraftment and long-term function, C57BL/6 islets were engineered with SA-CD47 or 

SA as a control protein and used for intraportal transplantation in a syngeneic marginal 

mass (125 islets) model (Figure 30A).   Seven out of 8 mice (87.5%) transplanted with SA-

CD47-engineered islet graft showed engraftment and long-term function as assessed by 

blood glucose levels as compared with 1/7 (14.28%) of the SA-engineered islet graft 

recipients (p = 0.0088; Figure 30B, C and 31). The average days required for achieving 

normoglycemia was 17.86 ± 4.9 (mean ± SEM) in SA-CD47-islet recipients.  

Intraperitoneal glucose tolerance (IPGTT) test showed significantly rapid glucose 

clearance in long-term (>80 days) recipients of SA-CD47-engineered as compared with 

SA-engineered islet grafts (Figure 32A). Indeed, long-term SA-CD47-engineered islet 

graft recipients had a glucose clearance response comparable to naïve animals with a 

similar area under the curve (Figure 32B). Histological analyses demonstrated insulin-

secreting functional islet mass in long-term recipients (Figure 32 C and D).  Collectively, 

these results demonstrate that the transient display of SA-CD47 protein on islet surface 

significantly enhance engraftment and long-term function following intraportal 

transplantation. 
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Figure 30. Surface display of SA-CD47 protein significantly improves pancreatic islet 

engraftment and function in a syngeneic marginal mass intraportal transplantation 

model. (A) Study design for intraportal islet transplantation. Animals were monitored for 

blood glucose levels (BGL) post-transplantation and two consecutive daily readings of 

glucose ≥ 250 mg dl–1 was considered as engraftment failure. (B) Kaplan-Meier analysis 

between the groups shows significantly higher rate of post-transplant normoglycemia in 

chemically diabetic recipients of SA-CD47-enginered as compared with SA-engineered 

control grafts. Statistical difference assessed using log-rank (Mantel-Cox) test with **p 

<0.01. (C) Non-fasting blood glucose level of transplant recipients in (B). 
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Figure. 31.  SA-CD47 engineering improves the intraportal islet transplantation 

outcome. STZ induced (200 mg/kg) diabetic animals were transplanted with islets 

engineered with SA (A, n=7) or SA-CD47 protein (B, n=8). Animals were monitored for 

blood glucose levels (mg/dl) post transplantation. Grey shaded area indicates the 

euglycemic region (BGL < 250 mg/dl). 
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Figure 32. SA-CD47-engineered islet grafts show long-term survival and function 

following intraportal transplantation. (A) Intraperitoneal glucose tolerance test shows 

functional islet mass in long-term (>80 days) recipients of SA-CD47-engineered islet 

grafts. SA-CD47-engineered islet graft recipients (blue) were able to regulate blood 

glucose at levels comparable to age-matched naïve animals (green).  In marked contrast, 

SA-engineered islet graft recipients (red) failed to regulate blood glucose levels following 

intraperitoneal glucose challenge. (B) Area under the curve analysis for (A). (C, D) 

Histological analyses showing insulin positive islets in the liver of long-term graft 

recipients. Representative H&E (C) and immunofluorescence staining (D) of liver tissues 

of long-term recipients of SA-CD47-engineered islet grafts. Nuclei are stained with 

Hoechst (blue) and β-cells with anti-insulin antibody (red). Data mean comparison was 

done by two-tailed unpaired t-test for B. Shadow indicate SEM; ns, not significant. 
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SA-CD47 display alters the intrahepatic infiltration of inflammatory cells and 

inflammatory mediators. 

One of the characteristic features of IBMIR mediated early loss of islets is the 

recruitment of inflammatory myeloid cells into the site of engraftment87,97. To test whether 

SA-CD47 on the surface of islets protect them from IBMIR mediated destruction, livers of 

graft recipients were analyzed using flow cytometry to assess intrahepatic inflammatory 

infiltrates 3 hrs post-transplantation.  Livers of recipients transplanted with SA-CD47-

engineered islet grafts had lower numbers of inflammatory infiltrates, including CD11b+ 

myeloid cells, inflammatory monocytes (CD11b+ Ly6Chi/ CD11b+ Ly6Cint), neutrophils 

(CD11bhi Gr1hi), and macrophages (F4/80+) as compared with SA-engineered islet controls 

(Figure 33A and 34).  However, when analyzed at 24 hrs post transplantation, there were 

similar levels of intra hepatic inflammatory infiltrates in both SA-CD47- and SA-

engineered islet graft recipients.  This observation is in line with previous studies reporting 

appearance of inflammatory infiltrates in islet grafts as early as 15 min with massive 

infiltration by 2 hrs post transplantation84,87,89.  

We further analyzed the liver tissue samples by quantitative RT-PCR to assess the 

expression of inflammatory mediators involved in peri-transplant islet mass loss.  There 

was no significant difference in transcript levels for various inflammatory mediators 

between SA-CD47- and SA-engineered islet graft recipients when assessed at 3 hr post 

transplantation.  In marked contrast, when analyzed 24 hrs post transplantation, liver 

samples from SA-engineered islet recipients had significantly higher expression of 

transcripts for high mobility group box-1 (HMGB-1), tissue factor (TF), IL-1β, which are 

responsible for early islet loss as compared with the SA-CD47-engineered islet group 
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(Figure 33B).  Although there was reduction in transcripts levels for MCP-1 and NK-κB in 

the SA-CD47-engineerd islet group as compared with the SA-engineered group, 

differences did not reach statistical significance.  Taken together, these results show that 

the presence of SA-CD47 protein on islet grafts mitigates IBMIR by reducing the 

infiltration of inflammatory cells and their expression of inflammatory factors, resulting in 

enhanced engraftment and sustained function. 
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Figure 33. SA-CD47-islet recipients have significantly reduced infiltration of 

inflammatory cells and mediators in liver following intraportal transplantation. (A) 

Intrahepatic immune cells analysis 3 hr post-transplantation show substantially less 

infiltration of immune cells in SA-CD47-engineered islet graft recipients as compared with 

control SA-engineered islet recipients. Data points represent absolute cell number per gram 

of liver pooled from two independent experiment with n = 2-3 per group. (B) RTqPCR 

analysis of liver tissue samples 24 hr post-transplantation shows heightened expression of 

inflammatory mediators in SA-engineered islets as compared with SA-CD47-engineered 

islets. Data points represent relative expression in comparison to GAPDH pooled from two 

independent experiments, each with n=2-4 per group. For comparison of means unpaired 

one-tailed t-test was used in (A) and (B). *p < 0.05, **p < 0.01. Data shown as mean ± 

SEM. 

 

 

 

 



www.manaraa.com

106 
 

 

 

 

 

 

 

Figure 34. SA-CD47-engineered islet graft recipients have substantially less intra-

hepatic infiltration of inflammatory cells. Data point indicates frequency of respective 

cells (as frequency of total CD45.2+ cells) 3 hrs post-transplantation. Data pooled from two 

independent experiments, with n=2-3 in each group, represented as mean ± SEM. *p <0.05, 

**p < 0.01. For comparison of means unpaired one-tailed t-test was performed. 
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Discussion 

IBMIR mediated primarily by myeloid cells is responsible for significant islet mass 

loss immediate post infusion into the liver174-176.  Despite being transplanted from multiple 

donors, the functional islet mass in insulin-independent patients is equivalent of 30% of a 

non-diabetic healthy individual90. CD47/SIRPα axis is a critical innate immune checkpoint 

that inhibits activation and phagocytic function of myeloid cells as a critical mechanism of 

self/non-self-discrimination186.  Tumor cells express CD47 on their surface as an effective 

means of immune evasion and the blockade of this molecule using antibodies was shown 

to galvanize innate immune responses against tumor with remarkable efficacy for the 

clearance of cancer in various preclinical models186-189.  In this study, we assessed whether 

tumor immune evasion mechanisms can be simulated using CD47 as a means of mitigating 

IBMIR. We herein report for the first time that the transient display of a novel form of this 

molecule, SA-CD47, on the surface of islets results in enhanced engraftment and long-term 

function in an intraportal minimal mass syngeneic mouse model.  Long-term engraftment 

and function were associated with peri-transplant reduced intragraft inflammatory innate 

immune cells and transcripts for proinflammatory mediators. 

As a practical and alternative approach to ectopic expression of CD47 in islets, we 

generated a novel construct, SA-CD47, that contained the extracellular functional domain 

of mouse CD47 chimeric with core-streptavidin using a previously published scheme for 

FasL as a regulator of adaptive immunity129. Consistent with the structural features of 

streptavidin206, SA-CD47 protein exists as oligomers and was displayed on the surface of 

biotinylated cells and islets in a rapid and efficient manner taking advantage of the high 

affinity interaction (Kd ~10-14 M) between biotin and streptavidin206. Importantly, the 
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engineering of islets with SA-CD47 did not negatively impact their viability, metabolic 

activity, or insulin secretion. These findings are consistent with our published studies 

transiently displaying SA-FasL on the surface of islets for the regulation of alloreactive 

immune responses204,207.  In an in vitro xenogeneic system, SA-CD47-engineered rat cells 

overcame phagocytosis by mouse macrophages.  This observation is consistent with studies 

demonstrating that porcine cells genetically modified to express human CD47 circumvent 

phagocytosis by human macrophages195.  Engraftment of human hematopoietic stem cells 

is sensitive to SIRPα alleles expressed in mice as NOD expressing the high affinity allele 

for human CD47 show better engraftment as compared with mice expressing alleles with 

low affinity194.  Furthermore, mouse hematopoietic stem cells were shown to transiently 

upregulate CD47 on their surface in response to mobilizing cytokines and inflammatory 

agents and the level of expression was directly correlated to their ability to evade 

phagocytosis208.      

In vitro loop assay that simulates in vivo IBMIR, that involves direct contact of 

peripheral blood with islets, showed well-preserved morphology with uniform distribution 

of nuclei and minimal fracture of SA-CD47-engineered islets as compared with SA-

engineered controls. There were significantly (p=0.0244) fewer CD11b+ cells in the islet-

thrombus as compared with SA-engineered islets. This result suggested that SA-CD47 can 

potentially abrogate IBMIR effects. Following this observation, in intraportal islet 

transplantation, islets engineered with SA-CD47 protein showed significantly enhanced 

engraftment and long-term function (87.5%) as compared with SA control protein-

engineered islets (14.2%) following intraportal transplantation.  These observation 

provides strong evidence for the ability of SA-CD47 to mitigate IBMIR and is consistent 
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with a study reporting improved engraftment of human hepatocytes transduced with the 

mouse CD47 in immunodeficient mice following intraportal transplantation209.  Also, 

transplantation of hepatocytes from CD47 knockout mice into syngeneic wild type 

recipients resulted in the activation of macrophages and poor graft survival120.  Previous 

studies have shown that IBMIR is initiated immediately after islet infusion80,84,87. Rapid 

platelets deposition is observed within 30 mins on the islet surface along with infiltration 

of neutrophils/macrophages (CD11b+) that appear as early as 15 min post-transplantation 

and peak at 2 hr87. When analyzed at 3 hrs post-transplantation, SA-CD47-engineered islet 

graft recipients had significantly less intragraft inflammatory cells, particularly 

inflammatory monocytes (CD11b+ Ly6Chi/Ly6Cint), neutrophils (CD11b+ Gr1hi), and 

macrophages (CD11b+ F4/80+) as compared with SA-engineered controls.  SA-CD47-

engineered islet grafts also had significantly reduced intragraft expression of 

proinflammatory HMGB1, TF, and IL-1β, all have been implicated in early islet 

loss79,83,210,211.  These observations indicate that the presence of SA-CD47 protein on the 

surface of islets protects them from IBMIR by preventing transmigration of inflammatory 

cells and reducing inflammatory mediators in the graft site.   

The current study offers a novel, effective, and practical strategy to ectopic 

expression of CD47 for the enhancement of autologous islet engraftment and long-term 

function following infusion into the liver.  However, the application of this facile approach 

is not limited to islets or autologous transplantation as it can be applied to any cellular auto 

or allotransplantation. Although in the present study, we focused on the efficacy of SA-

CD47 in modulating innate immune responses, CD47 has also been implicated in 

regulating adaptive immune responses.  CD47 interaction with SIRPα on DCs activates 
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STAT3, a critical regulator of IL-6, IL-10 and IDO expression, resulting in polarization of 

T cells toward a regulatory phenotype212,213. Interaction of CD47 with SIRPα expressed on 

DCs inhibits their activation and impair Th1 response214. CD47 interaction with SIRPα on 

DC was shown to be critical to cardiac allograft tolerance achieved by CD154 blockade 

and donor-specific transfusion215.  Lack of CD47 on donor cells resulted in rapid, 

alloantigen-independent activation of DCs, uncontrollable with CD154 blockade. 

Furthermore, intrasplenic infusion of CD47-deficinet allogeneic hepatocytes resulted in 

accelerated rejection of donor-matched skin grafts, whereas CD47-competant hepatocytes 

enhanced skin allograft survival that was associated with reduced alloreactive T cell 

responses, enhanced production of regulatory cytokines, IL-4 and IL-10, as well as 

significant expansion of myeloid-derived suppressor cells (MDSC)216.  Indeed, CD47 was 

shown to play a critical role in the expansion and regulatory function of MDSC in a 

costimulatory blockade-induced tolerance to kidney allografts.  The blockade of 

CD47/SIRPα pathway in this model resulted in rejection of long-term tolerant kidney grafts 

that was associated with overexpression of MCP-1 and inflammatory macrophage 

signature217.  However, it remains to be investigated if the transient display of SA-CD47 

on allogeneic islets or cellular grafts is sufficient as a single agent or in combination with 

a modulator of adaptive immunity, such as SA-FasL204,207,218,219, is effective in inducing 

tolerance.   
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CHAPTER 4 

SUMMARY, IMPLICATION AND FUTURE DIRECTION

 

In this dissertation, we show transient display of functional chimeric proteins as a 

novel immunomodulatory approach in two distinct experimental models. In chapter two, 

we use previously reported novel form of FasL, SA-FasL, to engineer donor graft in 

hematopoietic stem cell transplantation. In haploidentical and xenogeneic GVHD models, 

we provide evidence that engineering donor graft with SA-FasL can efficiently attenuate 

the GVHD causing ability of the graft, potentially by eliminating alloreactive cells. This 

strategy involves relatively very short procedure and is clinically translatable. Unlike 

previously reported strategies that involves ex vivo culture of donor grafts with recipient 

antigens for days, this method involves very minimal modulation of donor grafts. This 

strategy is highly impactable for procedures involving HSCT for leukemic patients or to 

establish donor chimerism for solid organ allo-graft transplantation. However, resistance 

of some T effector cells from AICD cannot be ignored. Also, SA-FasL-spleen recipients 

contract GVHD at some degree and some animals recovered as such the total protection is 

not 100%. This may be beneficial with respect to graft versus leukemia or graft versus 

tumor effect, where GVHD at some degree is required to maintain anti-leukemia effect. In 

addition, this may be important for other T cell functions like efficient engraftment and 

immunity against infections.  
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The proposed strategy can be modified in multiple ways to increase the impact. 

First, we show that engineering whole grafts leads to significant depletion of Treg cells 

without a negative impact on the efficacy of the protocol in our model. However, this may 

not be the case in the clinic. To avoid this potential pitfall, our approach could be used in 

combination with other clinically applied strategies, which is attractive and easily 

achievable given the efficient and practical nature of engineering. For example, we have 

shown that rapamycin as an immunoregulatory drug with beneficial impact on Treg cells, 

works in synergy with SA-FasL in islet and heart transplantation models130,220.  Rapamycin 

is used widely in the clinical transplantation with great safety profile and can be used in 

combination with SA-FasL engineered cells to mitigate GVHD. Alternatively, SA-FasL 

can be used in combination with IL-33, another immunoregulator with beneficial effect on 

Treg cells, or chemotherapy-based conditioning, such as cyclophosphamide that also 

positively impacts Treg cells and extensively used for HSCT in the clinic.  

On the second part of the dissertation, we report novel implication of CD47-SIRPα 

axis in attenuation of IBMIR. We show that islets engineered with SA-CD47 can modulate 

innate immune responses, resulting in the prevention of early islet loss, maintaining 

functional islet mass, and promoting efficient engraftment. This strategy has significant 

implication in islet transplant settings either in allogeneic or autologous transplantation. 

This is the first study of its kind where we target innate immune cells, myeloid cells, to 

modulate immune response to prevent early loss of islets due to IBMIR. To increase the 

impact of the observation, allogeneic study is very important to understand if similar results 

will be observed. In addition, this strategy needs to be tested with other clinically used 

agents, such as heparin to assess its beneficial impact.  Extensive mechanistic studies are 
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warranted in autologous as well as allogeneic settings to better understand how SA-CD47 

functions that will allow further refinement of this approach and its combinatorial use with 

agents that may work in synergy for a better outcome.  Most importantly, this approach 

needs to be tested for settings involved cell transplantation, such as HSC or hepatocytes, 

as a single agent and also in combination with other modulators.  In this context, the 

ProtExTM technology is a rather effective platform to display both SA-FasL and SA-CD47 

and the implication of these both molecules on HSCT and allogeneic islet transplantation 

will be important to explore.  
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